876 resultados para Maximal Aerobic Speed
Resumo:
Within the latest decade high-speed motor technology has been increasingly commonly applied within the range of medium and large power. More particularly, applications like such involved with gas movement and compression seem to be the most important area in which high-speed machines are used. In manufacturing the induction motor rotor core of one single piece of steel it is possible to achieve an extremely rigid rotor construction for the high-speed motor. In a mechanical sense, the solid rotor may be the best possible rotor construction. Unfortunately, the electromagnetic properties of a solid rotor are poorer than the properties of the traditional laminated rotor of an induction motor. This thesis analyses methods for improving the electromagnetic properties of a solid-rotor induction machine. The slip of the solid rotor is reduced notably if the solid rotor is axially slitted. The slitting patterns of the solid rotor are examined. It is shown how the slitting parameters affect the produced torque. Methods for decreasing the harmonic eddy currents on the surface of the rotor are also examined. The motivation for this is to improve the efficiency of the motor to reach the efficiency standard of a laminated rotor induction motor. To carry out these research tasks the finite element analysis is used. An analytical calculation of solid rotors based on the multi-layer transfer-matrix method is developed especially for the calculation of axially slitted solid rotors equipped with wellconducting end rings. The calculation results are verified by using the finite element analysis and laboratory measurements. The prototype motors of 250 – 300 kW and 140 Hz were tested to verify the results. Utilization factor data are given for several other prototypes the largest of which delivers 1000 kW at 12000 min-1.
Resumo:
Regular aerobic exercise training, which is touted as a way to ameliorate metabolic diseases, increases aerobic capacity. Aerobic capacity usually declines with advanced age. The decline in aerobic capacity is typically associated by a decrease in the quality of skeletal muscle. At the molecular level, this decreased quality comes in part from perturbations in skeletal muscle mitochondria. Of particular is a decrease in the total amount of mitochondria that occupy the skeletal muscle volume. What is not well established is if this decrease in mitochondrial content is due to inactive lifestyle or the process of aging. Herein, the work of the thesis shows a clear connection between mitochondrial content and aerobic capacity. This indicates that active individuals with higher VChmax levels also contain higher volumes of mitochondria inside their muscle as opposed to sedentary counterparts who have lower levels of mitochondrial content. Upon taking these previously sedentary individuals and entering them into an aerobic exercise intervention, they are able to recover their mitochondrial content as well as function to similar levels of lifelong athletes of the same age. Furthermore, the results of this thesis show that mitochondrial content and function also correlate with exercise efficiency. If one is more efficient, he/she is able to expend less energy for a similar power output. Furthermore, individuals who increase in efficiency also increase in the ability to oxidize and utilize fat during pro-longed exercise. This increased reliance on fat after the intervention is associated with an increased amount of mitochondria, particularly in the intermyofibrillar region of skeletal muscle. Therefore, elderly adults who were once sedentary were able to recover mitochondrial content and function and are able to reap other health benefits from regular aerobic exercise training. Aging per se does not seem to be the culprit that will lead to metabolic diseases but rather it seems to be a lack of physical activity. -- Un entraînement sportif d'endurance, connu pour réduire le risque de développer des maladies métaboliques, augmente notre capacité aérobie. La capacité aérobie diminue généralement avec l'âge. Ce déclin est typiquement associé d'une diminution de la qualité du muscle squelettique. Au niveau moléculaire, cette diminution est due à des perturbations dans les mitochondries du muscle squelettique,, ce qui conduit à une diminution de la quantité totale des mitochondries présentes dans le muscle squelettique. Il n'a pas encore été établi si cette diminution de la teneur mitochondriale est due à un mode de vie sédentaire ou au processus du vieillissement. Ce travail de thèse montre un lien clair entre le contenu mitochondrial et la capacité aérobie. Il indique que des personnes âgées actives, avec des niveaux de V02max plus élevés, possèdent également un volume plus élevé de mitochondries dans leurs muscles en comparaison à leurs homologues sédentaires. En prenant des individus sédentaires et leur faisant pratiquer une activité physique aérobie, il est possible d'accroître leur contenu de même que leur fonction mitochondriale à des niveaux similaires à ceux d'athlètes du même âge ayant pratiqué une activité physique tout au long de leur vie. De plus, les résultats de ce travail démontrent que le contenu et la fonction mitochondriale sont en corrélation avec l'efficiscience lors d'exercice physique. En agumentant l'effiscience, les personnes sont alors capables de dépenser moins d'énergie pour une puissance d'exercice similaire. Donc, un volume mitochondrial accru dans le muscle squelettique, associé à une fonction mitochondriale améliorée, est associté à une augmentation de l'effiscience. En outre, les personnes qui augmentent leur effiscience, augmentent aussi leur capacité à oxyder les graisses durant l'exercice prolongé. Une augmentation du recours au graisses après l'intervention est associée à une quantité accrue de mitochondries, en particulier dans la région inter-myofibrillaire du muscle squelettique. Par conséquent, les personnes âgées autrefois sédentaires sont en mesure de récupérer leur contenu et leur fonction mitochondriale ainsi que d'autres avantages pour la santé grâce à un entraînement aérobie régulier. Le vieillissement en soi ne semble donc pas être le coupable conduisant aux maladies métaboliques qui semblent plutôt être lié à un manque d'activité physique.
Resumo:
This study aimed to examine developmental trends in response inhibition during childhood and to control for possible developmental influence of other basic cognitive processes (such as working memory and processing speed). In addition, we explored the relationships between response inhibition, working memory, and processing speed, as they are thought to be integral to cognitive control. Therefore, we assessed these three cognitive abilities in 159 children aged from 5 to 12. Results showed an improvement in response inhibition ability from 5 to 10 years of age. This improvement remained significant after controlling for the influence of working memory and processing speed. Furthermore, the developmental relationships showed an early differentiation between response inhibition, working memory, and processing speed. Thus, these processes were independent and need to be treated as such in further studies.
Resumo:
STUDY DESIGN: Clinical measurement. PURPOSE: The test-retest reliability of maximal grip strength measurements (MGSM) is examined in subjects for 12 weeks post-stroke together with maximal grip strength recovery and the maximal-grip and upper-extremity strength measurements' relationship with capacity and performance test scores. METHODS: A Jamar dynamometer and the Motricity Index (MI) were used for strength measurements. The Chedoke Arm and Hand Activity Inventory and ABILHAND questionnaire for evaluating capacities and performances. RESULTS: MGSM were reliable (Intraclass Correlation Coefficients = 0.97-0.99, Minimal Detectable Differences = 2.73-4.68 kg). Among the 34 participants, 47% did not have a measurable grip strength one week post-stroke but 50% of these recovered some strength within the first eight weeks. The MGSM and MI scores were correlated with scores of tests of capacity and performance (Spearman's Rank Correlation Coefficients = 0.69-0.94). CONCLUSIONS: MGSM are reliable in the first weeks after a stroke. LEVEL OF EVIDENCE: N/A.
Resumo:
As the world’s energy demand is increasing, a durable solution to control it is to improve the energy efficiency of the processes. It has been estimated that pumping applications have a significant potential for energy savings trough equipment or control system changes. For many pumping application the use of a variable speed drive as a process control element is the most energy efficient solution. The main target of this study is to examine the energy efficiency of a drive system that moves the pump. In a larger scale the purpose of this study is to examine how the different manufacturers’ variable speed drives are functioning as a control device of a pumping process. The idea is to compare the drives from a normal pump user’s point of view. The things that are mattering for the pump user are the efficiency gained in the process and the easiness of the use of the VSD. So some thought is given also on valuating the user-friendliness of the VSDs. The VSDs are compared to each other also on the basis of their life cycle energy costs in different kind of pumping cases. The comparison is made between ACS800 from ABB, VLT AQUA Drive from Danfoss, NX-drive from Vacon and Micromaster 430 from Siemens. The efficiencies are measured in power electronics laboratory in the Lappeenranta University of Technology with a system that consists of a variable speed drive, an induction motor with dc-machine, two power analyzers and a torque transducer. The efficiencies are measured as a function of a load at different frequencies. According to measurement results the differences between the measured system efficiencies on the actual working area of pumping are on average few percent units. When examining efficiencies at the whole range of different loads and frequencies, the differences get bigger. At low frequencies and loads the differences between the most efficient and the least efficient systems are at the most about ten percent units. At the most of the tested points ABB’s drive seem to have slightly better efficiencies than the other drives.
Resumo:
BACKGROUND: Fatigability increases while the capacity for mitochondrial energy production tends to decrease significantly with age. Thus, diminished mitochondrial function may contribute to higher levels of fatigability in older adults. METHODS: The relationship between fatigability and skeletal muscle mitochondrial function was examined in 30 participants aged 78.5 ± 5.0 years (47% female, 93% white), with a body mass index of 25.9 ± 2.7 kg/m(2) and usual gait-speed of 1.2 ± 0.2 m/s. Fatigability was defined using rating of perceived exertion (6-20 point Borg scale) after a 5-minute treadmill walk at 0.72 m/s. Phosphocreatine recovery in the quadriceps was measured using (31)P magnetic resonance spectroscopy and images of the quadriceps were captured to calculate quadriceps volume. ATPmax (mM ATP/s) and oxidative capacity of the quadriceps (ATPmax·Quadriceps volume) were calculated. Peak aerobic capacity (VO2peak) was measured using a modified Balke protocol. RESULTS: ATPmax·Quadriceps volume was associated with VO2peak and was 162.61mM ATP·mL/s lower (p = .03) in those with high (rating of perceived exertion ≥10) versus low (rating of perceived exertion ≤9) fatigability. Participants with high fatigability required a significantly higher proportion of VO2peak to walk at 0.72 m/s compared with those with low fatigability (58.7 ± 19.4% vs 44.9 ± 13.2%, p < .05). After adjustment for age and sex, higher ATPmax was associated with lower odds of having high fatigability (odds ratio: 0.34, 95% CI: 0.11-1.01, p = .05). CONCLUSIONS: Lower capacity for oxidative phosphorylation in the quadriceps, perhaps by contributing to lower VO2peak, is associated with higher fatigability in older adults.
Resumo:
BACKGROUND: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. PURPOSE: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults' habitual and fast gait speed. METHODS: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included 'Resistance training', 'power training', 'coordination training', 'multimodal training', and 'gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age ≥65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. RESULTS: A total of 42 studies (mean PEDro score of 5.0 ± 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4-82.7]; body mass 69.9 ± 4.9 kg, height 1.64 ± 0.05 m, body mass index 26.4 ± 1.9 kg/m(2), and gait speed 1.22 ± 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (±0.12) or 8.4 % (±9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 %; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 %; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 %, ES: 0.86) increased gait speed statistically and similarly. CONCLUSIONS: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset.
Resumo:
This thesis presents briefly the basic operation and use of centrifugal pumps and parallel pumping applications. The characteristics of parallel pumping applications are compared to circuitry, in order to search analogy between these technical fields. The purpose of studying circuitry is to find out if common software tools for solving circuit performance could be used to observe parallel pumping applications. The empirical part of the thesis introduces a simulation environment for parallel pumping systems, which is based on circuit components of Matlab Simulink —software. The created simulation environment ensures the observation of variable speed controlled parallel pumping systems in case of different controlling methods. The introduced simulation environment was evaluated by building a simulation model for actual parallel pumping system at Lappeenranta University of Technology. The simulated performance of the parallel pumps was compared to measured values of the actual system. The gathered information shows, that if the initial data of the system and pump perfonnance is adequate, the circuitry based simulation environment can be exploited to observe parallel pumping systems. The introduced simulation environment can represent the actual operation of parallel pumps in reasonably accuracy. There by the circuitry based simulation can be used as a researching tool to develop new controlling ways for parallel pumps.
Resumo:
The regulation of speed limits in the US had been centralized at the federal level since 1974, until decisions were devolved to the states in 1995. However, the centralization debate has reemerged in recent years. Here, we conduct the first econometric analysis of the determinants of speed limit laws. By using economic, geographic and political variables, our results suggest that geography -which affects private mobility needs and preferences- is the main factor influencing speed limit laws. We also highlight the role played by political ideology, with Republican constituencies being associated with higher speed limits. Furthermore, we identify the presence of regional and time dependence effects. By contrast, poor road safety outcomes do not impede the enactment of high speed limits. Overall, we present the first evidence of the role played by geographical, ideological and regional characteristics, which provide us with a better understanding of the formulation of speed limit policies.
Resumo:
In April 2009, the US government unveiled its blueprint for a national network of high-speed passenger rail (HSR) lines aimed at reducing traffic congestion, cutting national dependence on foreign oil and improving rural and urban environments. In implementing such a program, it is essential to identify the factors that might influence decision making and the eventual success of the HSR project, as well as foreseeing the obstacles that will have to be overcome.
Resumo:
We use two coupled equations to analyze the space-time dynamics of two interacting languages. Firstly, we introduce a cohabitation model, which is more appropriate for human populations than classical (non-cohabitation) models. Secondly, using numerical simulations we nd the front speed of a new language spreading into a region where another language was previously used. Thirdly, for a special case we derive an analytical formula that makes it possible to check the validity of our numerical simulations. Finally, as an example, we nd that the observed front speed for the spread of the English language into Wales in the period 1961-1981 is consistent with the model predictions. We also nd that the e¤ects of linguistic parameters are much more important than those of parameters related to population dispersal and reproduction. If the initial population densities of both languages are similar, they have no e¤ect on the front speed. We outline the potential of the new model to analyze relationships between language replacement and genetic replacement
Resumo:
PURPOSE: The goal of this study was to explore the effect of lifelong aerobic exercise (i.e., chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared with noncompetitive recreational younger (YA) athletes matched by frequency and mode of training. METHODS: Thirteen OA (64.8 ± 4.9 yr) exercising 5 times per week or more were compared with 14 YA (27.8 ± 4.9 yr) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase, and capillarization were measured by immunohistochemistry in vastus lateralis biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before and after an insulin clamp and during a cycle ergometer graded maximal test. RESULTS: V˙O2peak was lower in OA than YA. The OA had greater IMTG in all fiber types and lower glycogen stores than YA. This was reflected in greater proportion of type I and less type II fibers in OA. Type I fibers were similar in size, whereas type II fibers were smaller in OA compared with YA. Both groups had similar succinate dehydrogenase content. Numbers of capillaries per fiber were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in OA. At moderate exercise intensities, carbohydrate-ox was lower in OA but with similar Fat-ox. CONCLUSIONS: Lifelong exercise is associated with higher IMTG content in all muscle fibers and higher metabolic efficiency during exercise that are not explained by differences in muscle fibers types and other muscle characteristics when comparing older with younger athletes matched by exercise mode and frequency.
Resumo:
We assessed knee extensor neuromuscular adjustments following repeated treadmill sprints in different normobaric hypoxia conditions, with special reference to rapid muscle torque production capacity. Thirteen team- and racquet-sport athletes undertook 8 × 5-s "all-out" sprints (passive recovery = 25 s) on a non-motorized treadmill in normoxia (NM; FiO2 = 20.9%), at low (LA; FiO2 = 16.8%) and high (HA; FiO2 = 13.3%) normobaric hypoxia (simulated altitudes of ~1800 m and ~3600 m, respectively). Explosive (~1 s; "fast" instruction) and maximal (~5 s; "hard" instruction) voluntary isometric contractions (MVC) of the knee extensors (KE), with concurrent electromyographic (EMG) activity recordings of the vastus lateralis (VL) and rectus femoris (RF) muscles, were performed before and 1-min post-exercise. Rate of torque development (RTD) and EMG (i.e., Root Mean Square or RMS) rise from 0 to 30, -50, -100, and -200 ms were recorded, and were also normalized to maximal torque and EMG values, respectively. Distance covered during the first 5-s sprint was similar (P > 0.05) in all conditions. A larger (P < 0.05) sprint decrement score and a shorter (P < 0.05) cumulated distance covered over the eight sprints occurred in HA (-8 ± 4% and 178 ± 11 m) but not in LA (-7 ± 3% and 181 ± 10 m) compared to NM (-5 ± 2% and 183 ± 9 m). Compared to NM (-9 ± 7%), a larger (P < 0.05) reduction in MVC torque occurred post-exercise in HA (-14 ± 9%) but not in LA (-12 ± 7%), with no difference between NM and LA (P > 0.05). Irrespectively of condition (P > 0.05), peak RTD (-6 ± 11%; P < 0.05), and normalized peak RMS activity for VL (-8 ± 11%; P = 0.07) and RF (-14 ± 11%; P < 0.01) muscles were reduced post-exercise, whereas reductions (P < 0.05) in absolute RTD occurred within the 0-100 (-8 ± 9%) and 0-200 ms (-10 ± 8%) epochs after contraction onset. After normalization to MVC torque, there was no difference in RTD values. Additionally, the EMG rise for VL muscle was similar (P > 0.05), whereas it increased (P < 0.05) for RF muscle during all epochs post-exercise, independently of the conditions. In summary, alteration in repeated-sprint ability and post-exercise MVC decrease were greater at high altitude than in normoxia or at low altitude. However, the post-exercise alterations in RTD were similar between normoxia and low-to-high hypoxia.
Resumo:
PURPOSE: We aimed to a) introduce a new Test to Exhaustion Specific to Tennis (TEST) and compare performance (test duration) and physiological responses to those obtained during the 20-m multistage shuttle test (MSST), and b) determine to which extent those variables correlate with performance level (tennis competitive ranking) for both test procedures. METHODS: Twenty-seven junior players (8 males, 19 females) members of the national teams of the French Tennis Federation completed MSST and TEST, including elements of the game (ball hitting, intermittent activity, lateral displacement), in a randomized order. Cardiorespiratory responses were compared at submaximal (respiratory compensation point) and maximal loads between the two tests. RESULTS: At the respiratory compensation point oxygen uptake (50.1 +/- 4.7 vs. 47.5 +/- 4.3 mL.min-1.kg-1, p = 0.02), but not minute ventilation and heart rate, was higher for TEST compared to MSST. However, load increment and physiological responses at exhaustion did not differ between the two tests. Players' ranking correlated negatively with oxygen uptake measured at submaximal and maximal loads for both TEST (r = -0.41; p = 0.01 and -0.55; p = 0.004) and MSST (r = -0.38; P = 0.05 and -0.51; p = 0.1). CONCLUSION: Using TEST provides a tennis-specific assessment of aerobic fitness and may be used to prescribe aerobic exercise in a context more appropriate to the game than MSST. Results also indicate that VO2 values both at submaximal and maximal load reached during TEST and MSST are moderate predictors of players competitive ranking.