985 resultados para Matrices genéricas
Resumo:
An integrable Kondo problem in the one-dimensional supersymmetric t-J model is studied by means of the boundary supersymmetric quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained. (C) 1999 Elsevier Science B.V.
Resumo:
A full set of Casimir operators for the Lie superalgebra gl(m/infinity) is constructed and shown to be well defined in the category O-FS generated by the highest-weight irreducible representations with only a finite number of non-zero weight components. The eigenvalues of these Casimir operators are determined explicitly in terms of the highest weight. Characteristic identities satisfied by certain (infinite) matrices with entries from gl(m/infinity) are also determined.
Resumo:
Integrable Kondo impurities in the one-dimensional supersymmetric U model of strongly correlated electrons are studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local magnetic moments of the impurities are presented as non-trivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, the model Hamiltonian is diagonalized and the Bethe ansatz equations are derived. It is interesting to note that our model exhibits a free parameter in the bulk Hamiltonian but no free parameter exists on the boundaries. This is in sharp contrast to the impurity models arising from the supersymmetric t-J and extended Hubbard models where there is no free parameter in the bulk but there is a free parameter on each boundary.
Resumo:
Poor root development due to constraining soil conditions could be an important factor influencing health of urban trees. Therefore, there is a need for efficient techniques to analyze the spatial distribution of tree roots. An analytical procedure for describing tree rooting patterns from X-ray computed tomography (CT) data is described and illustrated. Large irregularly shaped specimens of undisturbed sandy soil were sampled from Various positions around the base of trees using field impregnation with epoxy resin, to stabilize the cohesionless soil. Cores approximately 200 mm in diameter by 500 mm in height were extracted from these specimens. These large core samples were scanned with a medical X-ray CT device, and contiguous images of soil slices (2 mm thick) were thus produced. X-ray CT images are regarded as regularly-spaced sections through the soil although they are not actual 2D sections but matrices of voxels similar to 0.5 mm x 0.5 mm x 2 mm. The images were used to generate the equivalent of horizontal root contact maps from which three-dimensional objects, assumed to be roots, were reconstructed. The resulting connected objects were used to derive indices of the spatial organization of roots, namely: root length distribution, root length density, root growth angle distribution, root spatial distribution, and branching intensity. The successive steps of the method, from sampling to generation of indices of tree root organization, are illustrated through a case study examining rooting patterns of valuable urban trees. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
An integrable Kondo problem in the one-dimensional supersymmetric extended Hubbard model is studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local moments of the impurities are presented as a non-trivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.
Resumo:
The graded-fermion algebra and quasispin formalism are introduced and applied to obtain the gl(m\n)down arrow osp(m\n) branching rules for the two- column tensor irreducible representations of gl(m\n), for the case m less than or equal to n(n > 2). In the case m < n, all such irreducible representations of gl(m\n) are shown to be completely reducible as representations of osp(m\n). This is also shown to be true for the case m=n, except for the spin-singlet representations, which contain an indecomposable representation of osp(m\n) with composition length 3. These branching rules are given in fully explicit form. (C) 1999 American Institute of Physics. [S0022-2488(99)04410-2].
Resumo:
This paper is devoted to the problems of finding the load flow feasibility, saddle node, and Hopf bifurcation boundaries in the space of power system parameters. The first part contains a review of the existing relevant approaches including not-so-well-known contributions from Russia. The second part presents a new robust method for finding the power system load flow feasibility boundary on the plane defined by any three vectors of dependent variables (nodal voltages), called the Delta plane. The method exploits some quadratic and linear properties of the load now equations and state matrices written in rectangular coordinates. An advantage of the method is that it does not require an iterative solution of nonlinear equations (except the eigenvalue problem). In addition to benefits for visualization, the method is a useful tool for topological studies of power system multiple solution structures and stability domains. Although the power system application is developed, the method can be equally efficient for any quadratic algebraic problem.
Resumo:
Three kinds of integrable Kondo problems in one-dimensional extended Hubbard models are studied by means of the boundary graded quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras acting in a (2s alpha + 1)-dimensional impurity Hilbert space. Furthermore, these models are solved using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained.
Resumo:
Matrix population models, elasticity analysis and loop analysis can potentially provide powerful techniques for the analysis of life histories. Data from a capture-recapture study on a population of southern highland water skinks (Eulamprus tympanum) were used to construct a matrix population model. Errors in elasticities were calculated by using the parametric bootstrap technique. Elasticity and loop analyses were then conducted to identify the life history stages most important to fitness. The same techniques were used to investigate the relative importance of fast versus slow growth, and rapid versus delayed reproduction. Mature water skinks were long-lived, but there was high immature mortality. The most sensitive life history stage was the subadult stage. It is suggested that life history evolution in E. tympanum may be strongly affected by predation, particularly by birds. Because our population declined over the study, slow growth and delayed reproduction were the optimal life history strategies over this period. Although the techniques of evolutionary demography provide a powerful approach for the analysis of life histories, there are formidable logistical obstacles in gathering enough high-quality data for robust estimates of the critical parameters.
Resumo:
Integrable Kondo impurities in two cases of one-dimensional q-deformed t-J models are studied by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary K matrices depending on the local magnetic moments of the impurities are presented as nontrivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, these models are solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.
Resumo:
Promiscuous T-cell epitopes make ideal targets for vaccine development. We report here a computational system, multipred, for the prediction of peptide binding to the HLA-A2 supertype. It combines a novel representation of peptide/MHC interactions with a hidden Markov model as the prediction algorithm. multipred is both sensitive and specific, and demonstrates high accuracy of peptide-binding predictions for HLA-A*0201, *0204, and *0205 alleles, good accuracy for *0206 allele, and marginal accuracy for *0203 allele. multipred replaces earlier requirements for individual prediction models for each HLA allelic variant and simplifies computational aspects of peptide-binding prediction. Preliminary testing indicates that multipred can predict peptide binding to HLA-A2 supertype molecules with high accuracy, including those allelic variants for which no experimental binding data are currently available.
Resumo:
Background: A variety of methods for prediction of peptide binding to major histocompatibility complex (MHC) have been proposed. These methods are based on binding motifs, binding matrices, hidden Markov models (HMM), or artificial neural networks (ANN). There has been little prior work on the comparative analysis of these methods. Materials and Methods: We performed a comparison of the performance of six methods applied to the prediction of two human MHC class I molecules, including binding matrices and motifs, ANNs, and HMMs. Results: The selection of the optimal prediction method depends on the amount of available data (the number of peptides of known binding affinity to the MHC molecule of interest), the biases in the data set and the intended purpose of the prediction (screening of a single protein versus mass screening). When little or no peptide data are available, binding motifs are the most useful alternative to random guessing or use of a complete overlapping set of peptides for selection of candidate binders. As the number of known peptide binders increases, binding matrices and HMM become more useful predictors. ANN and HMM are the predictive methods of choice for MHC alleles with more than 100 known binding peptides. Conclusion: The ability of bioinformatic methods to reliably predict MHC binding peptides, and thereby potential T-cell epitopes, has major implications for clinical immunology, particularly in the area of vaccine design.
Resumo:
We study the transformation of maximally entangled states under the action of Lorentz transformations in a fully relativistic setting. By explicit calculation of the Wigner rotation, we describe the relativistic analog of the Bell states as viewed from two inertial frames moving with constant velocity with respect to each other. Though the finite dimensional matrices describing the Lorentz transformations are non-unitary, each single particle state of the entangled pair undergoes an effective, momentum dependent, local unitary rotation, thereby preserving the entanglement fidelity of the bipartite state. The details of how these unitary transformations are manifested are explicitly worked out for the Bell states comprised of massive spin 1/2 particles and massless photon polarizations. The relevance of this work to non-inertial frames is briefly discussed.
Resumo:
This paper analyzes the geography of regional competitiveness in manufacturing in Brazil. The authors estimate stochastic frontiers to calculate regional efficiency of representative firms in 137 regions in the period 2000-2006, in four sectors defined by technological intensity. The efficiency results are analyzed using Markov Spatial Transition Matrices to provide insights into the transition of regions between efficiency levels, considering their local spatial context. The results indicate that geography plays an important role in manufacturing competitiveness. In particular, regions with more competitive neighbors are more likely to improve their relative efficiency (pull effect) over time, and regions with less competitive neighbors are more likely to lose relative efficiency (drag effect). The authors find that the pull effect is stronger than the drag effect.
Resumo:
We introduced a spectral clustering algorithm based on the bipartite graph model for the Manufacturing Cell Formation problem in [Oliveira S, Ribeiro JFF, Seok SC. A spectral clustering algorithm for manufacturing cell formation. Computers and Industrial Engineering. 2007 [submitted for publication]]. It constructs two similarity matrices; one for parts and one for machines. The algorithm executes a spectral clustering algorithm on each separately to find families of parts and cells of machines. The similarity measure in the approach utilized limited information between parts and between machines. This paper reviews several well-known similarity measures which have been used for Group Technology. Computational clustering results are compared by various performance measures. (C) 2008 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.