987 resultados para Mathematical structure
Resumo:
A new parafermionic algebra associated with the homogeneous space A(2)((2))/U(1) and its corresponding Z-algebra have been recently proposed. In this paper, we give a free boson representation of the A(2)((2)) parafermion algebra in terms of seven free fields. Free field realizations of the parafermionic energy-momentum tensor and screening currents are also obtained. A new algebraic structure is discovered, which contains a W-algebra type primary field with spin two. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Objectives: This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Methods: Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Results: Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Conclusions: Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Free field and twisted parafermionic representations of twisted su(3)(k)((2)) current algebra are obtained. The corresponding twisted Sugawara energy-momentum tensor is given in terms of three (beta, gamma) pairs and two scalar fields and also in terms of twisted parafermionic currents and one scalar field. Two screening currents of the first kind are presented in terms of the free fields.
Resumo:
The problem of designing spatially cohesive nature reserve systems that meet biodiversity objectives is formulated as a nonlinear integer programming problem. The multiobjective function minimises a combination of boundary length, area and failed representation of the biological attributes we are trying to conserve. The task is to reserve a subset of sites that best meet this objective. We use data on the distribution of habitats in the Northern Territory, Australia, to show how simulated annealing and a greedy heuristic algorithm can be used to generate good solutions to such large reserve design problems, and to compare the effectiveness of these methods.
Resumo:
A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-beta-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67+/-13.86 mg P l(-1) was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04+/-1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of in-tensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 mum) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 mum) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria , but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.
Resumo:
The agency relationship between managers and shareholders has the potential to influence decision-making in the firm which in turn potentially impacts on firm characteristics such as value and leverage. Prior evidence has demonstrated an association between ownership structure and firm value. This paper extends the literature by examining a further link between ownership structure and capital structure. Using an agency framework, it is argued that the distribution of equity ownership among corporate managers and external blockholders may have a significant relation with leverage. The empirical results provide support for a positive relation between external blockholders and leverage, and non-linear relation between the level of managerial share ownership and leverage. The results also suggest that the relation between external block ownership and leverage varies across the level of managerial share ownership. These results are consistent with active monitoring by blockholders, and the effects of convergence-of-interests and management entrenchment.
Resumo:
This paper details an investigation of a power combiner that uses a reflect array of dual-feed aperture-coupled microstrip patch antennas and a corporate-fed dual-polarized array as a signal distributing/combining device. In this configuration, elements of the reflect array receive a linearly polarized wave and retransmit it with an orthogonal polarization using variable-length sections of microstrip lines connecting receive and transmit ports. By applying appropriate lengths of these delay lines, the array focuses the transmitted wave onto the feed array. The operation of the combiner is investigated for a small-size circular reflect array for the cases of -3 dB, -6 dB and -10 dB edge illumination by the 2 x 2-element dual-polarized array.
Resumo:
The (6R*,9S*,11S*) and (22S*,23R*,27R*,31R*) stereochemistry, respectively, of the tetrahydropyranyl and spiroacetal moieties in bistramide A (1) have been established by stereoselective syntheses and high field NMR comparisons. Routes to the gamma-amino acid moiety are outlined. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) catalyzes the first step in branched-chain amino acid biosynthesis. The enzyme requires thiamin diphosphate and FAD for activity, but the latter is unexpected, because the reaction involves no oxidation or reduction. Due to its presence in plants, AHAS is a target for sulfonylurea and imidazolinone herbicides. Here, the crystal structure to 2.6 A resolution of the catalytic subunit of yeast AHAS is reported. The active site is located at the dimer interface and is near the proposed herbicide-binding site. The conformation of FAD and its position in the active site are defined. The structure of AHAS provides a starting point for the rational design of new herbicides. (C) 2002 Elsevier Science Ltd.
Resumo:
A finite-element method is used to study the elastic properties of random three-dimensional porous materials with highly interconnected pores. We show that Young's modulus, E, is practically independent of Poisson's ratio of the solid phase, nu(s), over the entire solid fraction range, and Poisson's ratio, nu, becomes independent of nu(s) as the percolation threshold is approached. We represent this behaviour of nu in a flow diagram. This interesting but approximate behaviour is very similar to the exactly known behaviour in two-dimensional porous materials. In addition, the behaviour of nu versus nu(s) appears to imply that information in the dilute porosity limit can affect behaviour in the percolation threshold limit. We summarize the finite-element results in terms of simple structure-property relations, instead of tables of data, to make it easier to apply the computational results. Without using accurate numerical computations, one is limited to various effective medium theories and rigorous approximations like bounds and expansions. The accuracy of these equations is unknown for general porous media. To verify a particular theory it is important to check that it predicts both isotropic elastic moduli, i.e. prediction of Young's modulus alone is necessary but not sufficient. The subtleties of Poisson's ratio behaviour actually provide a very effective method for showing differences between the theories and demonstrating their ranges of validity. We find that for moderate- to high-porosity materials, none of the analytical theories is accurate and, at present, numerical techniques must be relied upon.
Resumo:
Potted lychee trees (cv. Tai so) of varying vegetative flush maturity were grown under a range of temperature regimes and monitored for subsequent shoot structure and development. A combination of low temperature (15/17 or 18/13 degreesC day/night) and high vegetative flush maturity was necessary for floral initiation to occur, Exposure to high temperatures (28/23 degreesC) invariably resulted in the production of vegetative shoots, irrespective of flush maturity. Strong floral initiation was marked by the emergence of terminal particles and accompanying axillary particles. A decrea,;e in vegetative flush maturity or increase in temperature (e.g. 23/18 degreesC) resulted in a decrease in axillary shoot formation and the production of several intermediate shoot structures. These included leafy particles, stunted particles, partially emerged buds and non-emergent swollen buds, often produced on the same tree. At 23/18 degreesC, closer synchronisation of initial flush maturity was required for the production of a consistent shoot-type. Trees with synchronised mature flushes (I-2) at 23/18 degreesC resulted in the production of swollen terminal buds. Healthy trees were maintained in this state for at least 11 months. These results indicate that both temperature and flush maturity can influence subsequent shoot structure of lychee. In the absence of either a strong floral temperature (18/13 degreesC) or strong vegetative temperature (28/23 degreesC), slight differences in initial flush maturity have gteater impact on the type of emerging shoot formed. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Doped ceria (CeO2) compounds are fluorite type oxides that show oxygen ionic conductivity higher than yttria stabilized zirconia, in oxidizing atmosphere. In order to improve the conductivity, the effective index was suggested to maximize the oxygen ionic conductivity in doped CeO2 based oxides. In addition, the true microstructure of doped CeO2 was observed at atomic scale for conclusion of conduction mechanism. Doped CeO2 had small domains (10-50 nm) with ordered structure in a grain. It is found that the electrolytic properties strongly depended on the nano-structural feature at atomic scale in doped CeO2 electrolyte.