991 resultados para Mass shift


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silane (SiH4) was used as an n-type dopant in GaAs grown by low pressure metalorganic vapor phase epitaxy using trimethylgallium (TMGa) and arsine (AsH3) as source materials. The electron carrier concentrations and silicon (Si) incorporation efficiency are studied by using Hall effect, electrochemical capacitance voltage profiler and low temperature photoluminescence (LTPL) spectroscopy. The influence of growth parameters, such as SiH4 mole fraction, growth temperature, TMGa and AsH3 mole fractions on the Si incorporation efficiency have been studied. The electron concentration increases with increasing SIH4 mole fraction, growth temperature, and decreases with increasing TMGa and AsH3 mole fractions. The decrease in electron concentration with increasing TMGa can be explained by vacancy control model. The PL experiments were carried out as a function of electron concentration (10(17) - 1.5 x 10(18) cm(-3)). The PL main peak shifts to higher energy and the full width at half maximum (FWHM) increases with increasing electron concentrations. We have obtained an empirical relation for FWHM of PL, Delta E(n) (eV) = 1.4 x 10(-8) n(1/3). We also obtained an empirical relation for the band gap shrinkage, Delta E-g in Si-doped GaAs as a function of electron concentration. The value of Delta E-g (eV) = -2.75 x 10(-8) n(1/3), indicates a significant band gap shrinkage at high doping levels. These relations are considered to provide a useful tool to determine the electron concentration in Si-doped GaAs by low temperature PL measurement. The electron concentration decreases with increasing TMGa and AsH3 mole fractions and the main peak shifts to the lower energy side. The peak shifts towards the lower energy side with increasing TMGa variation can also be explained by vacancy control model. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple method to generate time domain tailored waveforms for excitation of ion axial amplitude in Paul trap mass spectrometers is described. The method is based on vector summation of sine waves followed by time domain sampling to obtain the discrete time domain data. A smoothing technique based on the time domain Kaiser window is then applied to the data so as to minimize the frequency domain Gibb's oscillations. The dynamic range of the time domain signal is controlled by phase modulation and time extension of the time domain waveform. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental realization of quantum information processing in the field of nuclear magnetic resonance (NMR) has been well established. Implementation of conditional phase-shift gate has been a significant step, which has lead to realization of important algorithms such as Grover's search algorithm and quantum Fourier transform. This gate has so far been implemented in NMR by using coupling evolution method. We demonstrate here the implementation of the conditional phase-shift gate using transition selective pulses. As an application of the gate, we demonstrate Grover's search algorithm and quantum Fourier transform by simulations and experiments using transition selective pulses. (C) 2002 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transient macroscopic model is developed for studying heat and mass transfer in a single-pass laser surface alloying process, with particular emphasis on non-equilibrium solidification considerations. The solution for species concentration distribution requires suitable treatment of non-equilibrium mass transfer conditions. In this context, microscopic features pertaining to non-equilibrium effects on account of solutal undercooling are incorporated through the formulation of a modified partition-coefficient. The effective partition-coefficient is numerically modeled by Means of a number of macroscopically observable parameters related to the solidifying domain. The numerical model is so developed that the modifications on account of non-equilibrium solidification considerations can be conveniently implemented in existing numerical codes based on equilibrium solidification considerations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic approach is developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. The problem formulation and description of boundary conditions are kept fairly general, so that a large class of problems can be addressed. Analysis of the momentum equations coupled with phase change considerations leads to the establishment of an advection velocity scale. Analysis of the energy equation leads to an estimation of the solid layer thickness. Different regimes corresponding to different dominant modes of transport are simultaneously identified. A comparative study involving several cases of possible thermal boundary conditions is also performed. Finally, a scaling analysis of the species conservation equation is carried out, revealing the effect of a non-equilibrium solidification model on solute segregation and species distribution. It is shown that non-equilibrium effects result in an enhanced macrosegregation compared with the case of an equilibrium model. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An AB(2) monomer, 1-(2-hydroxyethoxy)-3,5-bis-(methoxymethyl)-2,4,6-trimethylbenzene, was synthesized from mesitol and melt-polycondensed in the presence of an acid catalyst via a transetherification process at 145-150 degreesC to yield a soluble, moderately high molecular weight hyperbranched polyether. The degree of branching in the polymer was calculated to be 0.78 by a comparison of its NMR spectrum with that of an appropriately designed model compound. The weight-average molecular weight of the hyperbranched polymer was determined to be 64,600 (weight-average molecular weight/number-average molecular weight = 5.2) by size exclusion chromatography (SEC) in CHCl3, with polystyrene standards. The origin of the broad molecular weight distribution, which could either be intrinsic to such hyperbranched structures or be due to structural heterogeneity, was further probed by the fractionation of the samples by SEC and by the subjection of each fraction to matrix-assisted laser desorption/ionization time-of-flight mass spectral analysis. The mass spectral analysis suggested the presence of two primary types of species: one corresponding to the simple branched structure and the other to macrocyclics. Interestingly, from the relative intensities of the two peaks, it was apparent that cyclization became favorable at higher conversions in the melt transetherification process. (C) 2002 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is the first report on the analysis of random block polysulfide copolymers containing different amounts of repeating units in the copolymer backbone, which has been studied by direct pyrolysis mass spectrometry (DPMS) and by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The homopolymers such as poly(ethylene sulfide) (PES), poly(styrene sulfide) (PSS), and two random copolymers, viz., poly(ethylene sulfide(x)-co-styrene sulfide(y)) [copolymer I (x = y = 0.5) and copolymer II (x = 0.74, y = 0.26)] were investigated by both DPMS and Py-GC/MS (except copolymer II) techniques. In the case of copolymer I, the thermal degradation products of SE1, SE2, S-2, and S2E (S = styrene sulfide, E = ethylene sulfide) were detected in DPMS, whereas the formation of SE1 and SE2 were observed by Py-GC/MS technique. However, for copolymer II, SE3 was also found along with SE1, SE2, S-2, and S2E in DPMS. The formation of additional product (SE3) observed in copolymer II could be due to an increase in the block length formed during copolymerization. Further, a comparative study on thermal degradation of PES, poly(ethylene disulfide) (PEDS), and poly(ethylene tetrasulfide) (PETS) were investigated by Py-GC/MS. The pyrolysis products detected by both DPMS and Py-GC/MS indicates that the thermal decomposition of these polymers yield cyclic sulfides through an intramolecular exchange or by backbiting processes. The linear products with thiol and vinyl groups were also observed by Py-GC/MS along with the cyclic products via carbon hydrogen transfer reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three- dimensional, transient model is developed for studying heat transfer, fluid flow, and mass transfer for the case of a single- pass laser surface alloying process. The coupled momentum, energy, and species conservation equations are solved using a finite volume procedure. Phase change processes are modeled using a fixed-grid enthalpy-porosity technique, which is capable of predicting the continuously evolving solid- liquid interface. The three- dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. The model is simulated for different values of various significant processing parameters such as laser power, scanning speed, and powder feedrate in order to assess their influences on geometry and dynamics of the pool, cooling rates, as well as species concentration distribution inside the substrate. Effects of incorporating property variations in the numerical model are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.