1000 resultados para Markowitz solution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrated optical amplification at 1550 nm with a carbon tetrachloride solution of Er3+-Yb3+ codoped NaYF4 nanocubes synthesized with solvo-thermal route. Upon excitation with a 980 nm laser diode, the nanocube solution exhibited strong near-infrared emission by the I-4(13/2) -> I-4(15/2) transition of Er3+ ions due to energy transfer from Yb3+ ions. We obtained the highest optical gain coefficient at 1550 nm of 0.58 cm(-1) for the solution with the pumping power of 200 mW. This colloidal solution might be a promising candidate as a liquid medium for optical amplifier and laser at the optical communication wavelength. (C) 2009 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution behavior of linear polymer chains is well understood, having been the subject of intense study throughout the previous century. As plastics have become ubiquitous in everyday life, polymer science has grown into a major field of study. The conformation of a polymer in solution depends on the molecular architecture and its interactions with the surroundings. Developments in synthetic techniques have led to the creation of precision-tailored polymeric materials with varied topologies and functionalities. In order to design materials with the desired properties, it is imperative to understand the relationships between polymer architecture and their conformation and behavior. To meet that need, this thesis investigates the conformation and self-assembly of three architecturally complex macromolecular systems with rich and varied behaviors driven by the resolution of intramolecular conflicts. First we describe the development of a robust and facile synthetic approach to reproducible bottlebrush polymers (Chapter 2). The method was used to produce homologous series of bottlebrush polymers with polynorbornene backbones, which revealed the effect of side-chain and backbone length on the overall conformation in both good and theta solvent conditions (Chapter 3). The side-chain conformation was obtained from a series of SANS experiments and determined to be indistinguishable from the behavior of free linear polymer chains. Using deuterium-labeled bottlebrushes, we were able for the first time to directly observe the backbone conformation of a bottlebrush polymer which showed self-avoiding walk behavior. Secondly, a series of SANS experiments was conducted on a homologous series of Side Group Liquid Crystalline Polymers (SGLCPs) in a perdeuterated small molecule liquid crystal (5CB). Monodomain, aligned, dilute samples of SGLCP-b-PS block copolymers were seen to self-assemble into complex micellar structures with mutually orthogonally oriented anisotropies at different length scales (Chapter 4). Finally, we present the results from the first scattering experiments on a set of fuel-soluble, associating telechelic polymers. We observed the formation of supramolecular aggregates in dilute (≤0.5wt%) solutions of telechelic polymers and determined that the choice of solvent has a significant effect on the strength of association and the size of the supramolecules (Chapter 5). A method was developed for the direct estimation of supramolecular aggregation number from SANS data. The insight into structure-property relationships obtained from this work will enable the more targeted development of these molecular architectures for their respective applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a probabilistic assessment of the performance of structures subjected to uncertain environmental loads such as earthquakes, an important problem is to determine the probability that the structural response exceeds some specified limits within a given duration of interest. This problem is known as the first excursion problem, and it has been a challenging problem in the theory of stochastic dynamics and reliability analysis. In spite of the enormous amount of attention the problem has received, there is no procedure available for its general solution, especially for engineering problems of interest where the complexity of the system is large and the failure probability is small.

The application of simulation methods to solving the first excursion problem is investigated in this dissertation, with the objective of assessing the probabilistic performance of structures subjected to uncertain earthquake excitations modeled by stochastic processes. From a simulation perspective, the major difficulty in the first excursion problem comes from the large number of uncertain parameters often encountered in the stochastic description of the excitation. Existing simulation tools are examined, with special regard to their applicability in problems with a large number of uncertain parameters. Two efficient simulation methods are developed to solve the first excursion problem. The first method is developed specifically for linear dynamical systems, and it is found to be extremely efficient compared to existing techniques. The second method is more robust to the type of problem, and it is applicable to general dynamical systems. It is efficient for estimating small failure probabilities because the computational effort grows at a much slower rate with decreasing failure probability than standard Monte Carlo simulation. The simulation methods are applied to assess the probabilistic performance of structures subjected to uncertain earthquake excitation. Failure analysis is also carried out using the samples generated during simulation, which provide insight into the probable scenarios that will occur given that a structure fails.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In single-particle tracking (SPT), fluorescence video microscopy is used to record the motion images of single particle or single molecule. Here, by using a total-internal-reflection microscope equipped with an argon ion laser and a charge-coupled device (CCD) camera with high-speed and high-sensitivity, video images of single nanobeads in solutions were obtained. From the trajectories, the diffusion coefficient of individual nanobead was determined by the mean square displacements as a function of time. The sizes of nanobeads were calculated by Stokes-Einstein equation, and the results were compared with the actual values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theoretical model of direct diffraction phase-contrast imaging with partially coherent x-ray source is expressed by an operator of multiple integral. It is presented that the integral operator is linear. The problem of its phase retrieval is described by solving an operator equation of multiple integral. It is demonstrated that the solution of the phase retrieval is unstable. The numerical simulation is performed and the result validates that the solution of the phase retrieval is unstable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isoprene (ISO),the most abundant non-methane VOC, is the major contributor to secondary organic aerosols (SOA) formation. The mechanisms involved in such transformation, however, are not fully understood. Current mechanisms, which are based on the oxidation of ISO in the gas-phase, underestimate SOA yields. The heightened awareness that ISO is only partially processed in the gas-phase has turned attention to heterogeneous processes as alternative pathways toward SOA.

During my research project, I investigated the photochemical oxidation of isoprene in bulk water. Below, I will report on the λ > 305 nm photolysis of H2O2 in dilute ISO solutions. This process yields C10H15OH species as primary products, whose formation both requires and is inhibited by O2. Several isomers of C10H15OH were resolved by reverse-phase high-performance liquid chromatography and detected as MH+ (m/z = 153) and MH+-18 (m/z = 135) signals by electrospray ionization mass spectrometry. This finding is consistent with the addition of ·OH to ISO, followed by HO-ISO· reactions with ISO (in competition with O2) leading to second generation HO(ISO)2· radicals that terminate as C10H15OH via β-H abstraction by O2.

It is not generally realized that chemistry on the surface of water cannot be deduced, extrapolated or translated to those in bulk gas and liquid phases. The water density drops a thousand-fold within a few Angstroms through the gas-liquid interfacial region and therefore hydrophobic VOCs such as ISO will likely remain in these relatively 'dry' interfacial water layers rather than proceed into bulk water. In previous experiments from our laboratory, it was found that gas-phase olefins can be protonated on the surface of pH < 4 water. This phenomenon increases the residence time of gases at the interface, an event that makes them increasingly susceptible to interaction with gaseous atmospheric oxidants such as ozone and hydroxyl radicals.

In order to test this hypothesis, I carried out experiments in which ISO(g) collides with the surface of aqueous microdroplets of various compositions. Herein I report that ISO(g) is oxidized into soluble species via Fenton chemistry on the surface of aqueous Fe(II)Cl2 solutions simultaneously exposed to H2O2(g). Monomer and oligomeric species (ISO)1-8H+ were detected via online electrospray ionization mass spectrometry (ESI-MS) on the surface of pH ~ 2 water, and were then oxidized into a suite of products whose combined yields exceed ~ 5% of (ISO)1-8H+. MS/MS analysis revealed that products mainly consisted of alcohols, ketones, epoxides and acids. Our experiments demonstrated that olefins in ambient air may be oxidized upon impact on the surface of Fe-containing aqueous acidic media, such as those of typical to tropospheric aerosols.

Related experiments involving the reaction of ISO(g) with ·OH radicals from the photolysis of dissolved H2O2 were also carried out to test the surface oxidation of ISO(g) by photolyzing H2O2(aq) at 266 nm at various pH. The products were analyzed via online electrospray ionization mass spectrometry. Similar to our Fenton experiments, we detected (ISO)1-7H+ at pH < 4, and new m/z+ = 271 and m/z- = 76 products at pH > 5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Numerical solutions to the S-limit equations for the helium ground state and excited triplet state and the hydride ion ground state are obtained with the second and fourth difference approximations. The results for the ground states are superior to previously reported values. The coupled equations resulting from the partial wave expansion of the exact helium atom wavefunction were solved giving accurate S-, P-, D-, F-, and G-limits. The G-limit is -2.90351 a.u. compared to the exact value of the energy of -2.90372 a.u.

Part II

The pair functions which determine the exact first-order wavefunction for the ground state of the three-electron atom are found with the matrix finite difference method. The second- and third-order energies for the (1s1s)1S, (1s2s)3S, and (1s2s)1S states of the two-electron atom are presented along with contour and perspective plots of the pair functions. The total energy for the three-electron atom with a nuclear charge Z is found to be E(Z) = -1.125•Z2 +1.022805•Z-0.408138-0.025515•(1/Z)+O(1/Z2)a.u.