890 resultados para Marine pelagic community


Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Seamounts are considered to be ??hotspots?? of marine life but, their role in oceans primary productivity is still under discussion. We have studied the microbial community structure and biomass of the epipelagic zone (0?150 m) at two northeast Atlantic seamounts (Seine and Sedlo) and compared those with the surrounding ocean. Results from two cruises to Sedlo and three to Seine are presented. Main results show large temporal and spatial microbial community variability on both seamounts. Both Seine and Sedlo heterotrophic community (abundance and biomass) dominate during winter and summer months, representing 75% (Sedlo, July) to 86% (Seine, November) of the total plankton biomass. In Seine, during springtime the contribution to total plankton biomass is similar (47% autotrophic and 53% heterotrophic). Both seamounts present an autotrophic community structure dominated by small cells (nano and picophytoplankton). It is also during spring that a relatively important contribution (26%) of large cells to total autotrophic biomass is found. In some cases, a ??seamount effect?? is observed on Seine and Sedlo microbial community structure and biomass. In Seine this is only observed during spring through enhancement of large autotrophic cells at the summit and seamount stations. In Sedlo, and despite the observed low biomasses, some clear peaks of picoplankton at the summit or at stations within the seamount area are also observed during summer. Our results suggest that the dominance of heterotrophs is presumably related to the trapping effect of organic matter by seamounts. Nevertheless, the complex circulation around both seamounts with the presence of different sources of mesoscale variability (e.g. presence of meddies, intrusion of African upwelling water) may have contributed to the different patterns of distribution, abundances and also changes observed in the microbial community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Máster en Oceanografía

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] The submarine volcano eruption off El Hierro Island (Canary Islands) on 10 October 2011 promoted dramatic perturbation of the water column leading to changes in the distribution of pelagic fauna. To study the response of the scattering biota, we combined acoustic data with hydrographic profiles and concurrent sea surface turbidity indexes from satellite imagery. We also monitored changes in the plankton and nekton communities through the eruptive and post-eruptive phases. Decrease of oxygen, acidification, rising temperature and deposition of chemicals in shallow waters resulted in a reduction of epipelagic stocks and a disruption of diel vertical migration (nocturnal ascent) of mesopelagic organisms. Furthermore, decreased light levels at depth caused by extinction in the volcanic plume resulted in a significant shallowing of the deep acoustic scattering layer. Once the eruption ceased, the distribution and abundances of the pelagic biota returned to baseline levels. There was no evidence of a volcano-induced bloom in the plankton community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine soft bottom systems show a high variability across multiple spatial and temporal scales. Both natural and anthropogenic sources of disturbance act together in affecting benthic sedimentary characteristics and species distribution. The description of such spatial variability is required to understand the ecological processes behind them. However, in order to have a better estimate of spatial patterns, methods that take into account the complexity of the sedimentary system are required. This PhD thesis aims to give a significant contribution both in improving the methodological approaches to the study of biological variability in soft bottom habitats and in increasing the knowledge of the effect that different process (both natural and anthropogenic) could have on the benthic communities of a large area in the North Adriatic Sea. Beta diversity is a measure of the variability in species composition, and Whittaker’s index has become the most widely used measure of beta-diversity. However, application of the Whittaker index to soft bottom assemblages of the Adriatic Sea highlighted its sensitivity to rare species (species recorded in a single sample). This over-weighting of rare species induces biased estimates of the heterogeneity, thus it becomes difficult to compare assemblages containing a high proportion of rare species. In benthic communities, the unusual large number of rare species is frequently attributed to a combination of sampling errors and insufficient sampling effort. In order to reduce the influence of rare species on the measure of beta diversity, I have developed an alternative index based on simple probabilistic considerations. It turns out that this probability index is an ordinary Michaelis-Menten transformation of Whittaker's index but behaves more favourably when species heterogeneity increases. The suggested index therefore seems appropriate when comparing patterns of complexity in marine benthic assemblages. Although the new index makes an important contribution to the study of biodiversity in sedimentary environment, it remains to be seen which processes, and at what scales, influence benthic patterns. The ability to predict the effects of ecological phenomena on benthic fauna highly depends on both spatial and temporal scales of variation. Once defined, implicitly or explicitly, these scales influence the questions asked, the methodological approaches and the interpretation of results. Problem often arise when representative samples are not taken and results are over-generalized, as can happen when results from small-scale experiments are used for resource planning and management. Such issues, although globally recognized, are far from been resolved in the North Adriatic Sea. This area is potentially affected by both natural (e.g. river inflow, eutrophication) and anthropogenic (e.g. gas extraction, fish-trawling) sources of disturbance. Although few studies in this area aimed at understanding which of these processes mainly affect macrobenthos, these have been conducted at a small spatial scale, as they were designated to examine local changes in benthic communities or particular species. However, in order to better describe all the putative processes occurring in the entire area, a high sampling effort performed at a large spatial scale is required. The sedimentary environment of the western part of the Adriatic Sea was extensively studied in this thesis. I have described, in detail, spatial patterns both in terms of sedimentary characteristics and macrobenthic organisms and have suggested putative processes (natural or of human origin) that might affect the benthic environment of the entire area. In particular I have examined the effect of off shore gas platforms on benthic diversity and tested their effect over a background of natural spatial variability. The results obtained suggest that natural processes in the North Adriatic such as river outflow and euthrophication show an inter-annual variability that might have important consequences on benthic assemblages, affecting for example their spatial pattern moving away from the coast and along a North to South gradient. Depth-related factors, such as food supply, light, temperature and salinity play an important role in explaining large scale benthic spatial variability (i.e., affecting both the abundance patterns and beta diversity). Nonetheless, more locally, effects probably related to an organic enrichment or pollution from Po river input has been observed. All these processes, together with few human-induced sources of variability (e.g. fishing disturbance), have a higher effect on macrofauna distribution than any effect related to the presence of gas platforms. The main effect of gas platforms is restricted mainly to small spatial scales and related to a change in habitat complexity due to a natural dislodgement or structure cleaning of mussels that colonize their legs. The accumulation of mussels on the sediment reasonably affects benthic infauna composition. All the components of the study presented in this thesis highlight the need to carefully consider methodological aspects related to the study of sedimentary habitats. With particular regards to the North Adriatic Sea, a multi-scale analysis along natural and anthopogenic gradients was useful for detecting the influence of all the processes affecting the sedimentary environment. In the future, applying a similar approach may lead to an unambiguous assessment of the state of the benthic community in the North Adriatic Sea. Such assessment may be useful in understanding if any anthropogenic source of disturbance has a negative effect on the marine environment, and if so, planning sustainable strategies for a proper management of the affected area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concerns over global change and its effect on coral reef survivorship have highlighted the need for long-term datasets and proxy records, to interpret environmental trends and inform policymakers. Citizen science programs have showed to be a valid method for collecting data, reducing financial and time costs for institutions. This study is based on the elaboration of data collected by recreational divers and its main purpose is to evaluate changes in the state of coral reef biodiversity in the Red Sea over a long term period and validate the volunteer-based monitoring method. Volunteers recreational divers completed a questionnaire after each dive, recording the presence of 72 animal taxa and negative reef conditions. Comparisons were made between records from volunteers and independent records from a marine biologist who performed the same dive at the same time. A total of 500 volunteers were tested in 78 validation trials. Relative values of accuracy, reliability and similarity seem to be comparable to those performed by volunteer divers on precise transects in other projects, or in community-based terrestrial monitoring. 9301 recreational divers participated in the monitoring program, completing 23,059 survey questionnaires in a 5-year period. The volunteer-sightings-based index showed significant differences between the geographical areas. The area of Hurghada is distinguished by a medium-low biodiversity index, heavily damaged by a not controlled anthropic exploitation. Coral reefs along the Ras Mohammed National Park at Sharm el Sheikh, conversely showed high biodiversity index. The detected pattern seems to be correlated with the conservation measures adopted. In our experience and that of other research institutes, citizen science can integrate conventional methods and significantly reduce costs and time. Involving recreational divers we were able to build a large data set, covering a wide geographic area. The main limitation remains the difficulty of obtaining an homogeneous spatial sampling distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An appropriate management of fisheries resources can only be achieved with the continuous supply of information on the structure and biology of populations, in order to predict the temporal fluctuations. This study supports the importance of investigating the bio-ecology of increasingly exploited and poorly known species, such as gurnards (Osteichthyes, Triglidae) from Adriatic Sea (Mediterranean), to quantify their ecological role into marine community. It also focuses on investigate inter and intra-specific structuring factor of Adriatic population. These objectives were achieved by: 1) investigating aspects of the population dynamics; 2) studying the feeding biology through the examination of stomach contents; 3) using sagittal otoliths as potential marker of species life cycle; 4) getting preliminary data on mDNA phylogeny. Gurnards showed a specie-specific “critical size” coinciding with the start of sexual maturity, the tendency to migrate to greater depths, a change of diet from crustaceans to fish and an increase of variety of food items eaten. Distribution of prey items, predator size range and depth distribution were the main dimensions that influence the breadth of trophic niche and the relative difference amongst Adriatic gurnards. Several feeding preferences were individuated and a possible impact among bigger-size gurnards and other commercial fishes (anchovy, gadoids) and Crustacea (such as mantis prawn and shrimps) were to be necessary considered. Otolith studies showed that gurnard species have a very fast growth despite other results in other areas; intra-specific differences and the increase in the variability of otolith shape, sulcus acusticus shape, S:O ratios, sulcus acusticus external crystals arrangement were shown between juveniles and adults and were linked to growth (individual genetic factors) and to environmental conditions (e.g. depth and trophic niche distribution). In order to facilitate correct biological interpretation of data, molecular data were obtained for comparing morphological distance to genetic ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification might reduce the ability of calcifying plankton to produce and maintain their shells of calcite, or of aragonite, the more soluble form of CaCO3. In addition to possibly large biological impacts, reduced CaCO3 production corresponds to a negative feedback on atmospheric CO2. In order to explore the sensitivity of the ocean carbon cycle to increasing concentrations of atmospheric CO2, we use the new biogeochemical Bern3D/PISCES model. The model reproduces the large scale distributions of biogeochemical tracers. With a range of sensitivity studies, we explore the effect of (i) using different parameterizations of CaCO3 production fitted to available laboratory and field experiments, of (ii) letting calcite and aragonite be produced by auto- and heterotrophic plankton groups, and of (iii) using carbon emissions from the range of the most recent IPCC Representative Concentration Pathways (RCP). Under a high-emission scenario, the CaCO3 production of all the model versions decreases from ~1 Pg C yr−1 to between 0.36 and 0.82 Pg C yr−1 by the year 2100. The changes in CaCO3 production and dissolution resulting from ocean acidification provide only a small feedback on atmospheric CO2 of −1 to −11 ppm by the year 2100, despite the wide range of parameterizations, model versions and scenarios included in our study. A potential upper limit of the CO2-calcification/dissolution feedback of −30 ppm by the year 2100 is computed by setting calcification to zero after 2000 in a high 21st century emission scenario. The similarity of feedback estimates yielded by the model version with calcite produced by nanophytoplankton and the one with calcite, respectively aragonite produced by mesozooplankton suggests that expending biogeochemical models to calcifying zooplankton might not be needed to simulate biogeochemical impacts on the marine carbonate cycle. The changes in saturation state confirm previous studies indicating that future anthropogenic CO2 emissions may lead to irreversible changes in ΩA for several centuries. Furthermore, due to the long-term changes in the deep ocean, the ratio of open water CaCO3 dissolution to production stabilizes by the year 2500 at a value that is 30–50% higher than at pre-industrial times when carbon emissions are set to zero after 2100.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contaminant metals bound to sediments are subject to considerable solubilization during passage of the sediments through the digestive systems of deposit feeders. We examined the kinetics of this process, using digestive fluids extracted from deposit feeders Arenicola marina and Parastichopus californicus and then incubated with contaminated sediments. Kinetics are complex, with solubilization followed occasionally by readsorption onto the sediment. In general, solubilization kinetics are biphasic, with an initial rapid step followed by a slower reaction. For many sediment-organism combinations, the reaction will not reach a steady state or equilibrium within the gut retention time (GRT) of the organisms, suggesting that metal bioavailability in sediments is a time-dependent parameter. Experiments with commercial protein solutions mimic the kinetic patterns observed with digestive fluids, which corroborates our previous study that complexation by dissolved amino acids (AA) in digestive fluids leads to metal solubilization (Chen & Mayer 1998b; Environ Sci Technol 32:770-778). The relative importance of the fast and slow reactions appears to depend on the ratio of ligands in gut fluids to the amount of bound metal in sediments. High ligand to solid metal ratios result in more metals released in fast reactions and thus higher lability of sedimentary metals. Multiple extractions of a sediment with digestive fluid of A. marina confirm the potential importance of incomplete reactions within a single deposit-feeding event, and make clear that bioavailability to a single animal is Likely different from that to a community of organisms. The complex kinetic patterns lead to the counterintuitive prediction that toxification of digestive enzymes by solubilized metals will occur more readily in species that dissolve less metals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of biogeochemical models to the study of marine ecosystems is pervasive, yet objective quantification of these models' performance is rare. Here, 12 lower trophic level models of varying complexity are objectively assessed in two distinct regions (equatorial Pacific and Arabian Sea). Each model was run within an identical one-dimensional physical framework. A consistent variational adjoint implementation assimilating chlorophyll-a, nitrate, export, and primary productivity was applied and the same metrics were used to assess model skill. Experiments were performed in which data were assimilated from each site individually and from both sites simultaneously. A cross-validation experiment was also conducted whereby data were assimilated from one site and the resulting optimal parameters were used to generate a simulation for the second site. When a single pelagic regime is considered, the simplest models fit the data as well as those with multiple phytoplankton functional groups. However, those with multiple phytoplankton functional groups produced lower misfits when the models are required to simulate both regimes using identical parameter values. The cross-validation experiments revealed that as long as only a few key biogeochemical parameters were optimized, the models with greater phytoplankton complexity were generally more portable. Furthermore, models with multiple zooplankton compartments did not necessarily outperform models with single zooplankton compartments, even when zooplankton biomass data are assimilated. Finally, even when different models produced similar least squares model-data misfits, they often did so via very different element flow pathways, highlighting the need for more comprehensive data sets that uniquely constrain these pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is expected that climate change will have significant impacts on ecosystems. Most model projections agree that the ocean will experience stronger stratification and less nutrient supply from deep waters. These changes will likely affect marine phytoplankton communities and will thus impact on the higher trophic levels of the oceanic food web. The potential consequences of future climate change on marine microbial communities can be investigated and predicted only with the help of mathematical models. Here we present the application of a model that describes aggregate properties of marine phytoplankton communities and captures the effects of a changing environment on their composition and adaptive capacity. Specifically, the model describes the phytoplankton community in terms of total biomass, mean cell size, and functional diversity. The model is applied to two contrasting regions of the Atlantic Ocean (tropical and temperate) and is tested under two emission scenarios: SRES A2 or “business as usual” and SRES B1 or “local utopia.” We find that all three macroecological properties will decline during the next century in both regions, although this effect will be more pronounced in the temperate region. Being consistent with previous model predictions, our results show that a simple trait-based modeling framework represents a valuable tool for investigating how phytoplankton communities may reorganize under a changing climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifteen species of pelagic fishes were collected in 156 gill net sets at eight locations in the Sheepscot River-Back River estuary, Wiscasset, Maine, June 1970 through December 1971. Highest catches occurred June through August. Only the rainbow smelt is a year-round resident. Differences in abundance in space and time are apparently related to temperature. During the summer, alewives, blueback herring, and Atlantic menhaden were most abundant in the relatively warm Back River estuary, while Atlantic herring, Atlantic mackerel, and spiny dogfish were most abundant in the more oceanic Sheepscot River estuary. Prolonged near-freezing temperatures apparently limit the time pelagic fishes spend in the estuary and limit the number of species which can inhabit it. It is hypothesized that the distribution of pelagic species which exhibited preferences for colder water, such as Atlantic herring, would be most affected by artificial warming of the surface waters of the Back River estuary, if a new atomic powered generating plant were allowed to discharge heated effluent directly into it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to reveal the structure of the sparsely known deeper sublittoral hard bottom communities of glacial Kongsfjorden, the macroepibenthos from six depth zones (30-200 m) was analysed. A total of 180 still images derived from 6-h video recorded at the Kongsfjordneset remotely operated vehicle station were assessed quantitatively. Overall 27 mainly suspension-feeding species/taxa were observed. Of these, two-thirds have an arcto-boreal distribution, while the remainder are cosmopolitan. The overall mean epibenthos abundance was 33 ind./m**2 with maximum values at 150 m depth (97.9 ind./m**2). The majority of the taxa inhabited the entire depth range. Encrusting red algae, an unidentified sponge and the sea anemone Urticina eques, characterized the assemblage of the shallow zone. The sea anemones Hormathia spp. were important below 30 m, the Serpulid polychaete Protula tubularia was characteristic for the community below 50 m and the demosponge Haliclona sp. was a key taxon between 100 and 200 m depth. Cluster analysis and non-metrical multidimensional scaling based on abundance data showed differences between the assemblages along the bathymetric gradient, but only in the shallower depths in relation to the substratum surface incline. As surface and tidal current impacts attenuate with increasing depth, there is a gradual trend from robust key species towards more fragile ones (i.e. P. tubularia), in line with the 'Physical control hypothesis'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite being a key zooplankton group, knowledge on krill biology from the Arctic is inadequate. The present study examine the functional biology and evaluate the trophic role of krill in the Godthabsfjord (64°N, 51°W) SW Greenland, through a combination of fieldwork and laboratory experiments. Krill biomass was highest in the middle fjord and inner fjord, whereas no krill was found offshore. The dominating species Thysanoessa raschii revealed a type III functional response when fed with the diatom Thalassiosira weissflogii. At food saturation, T. raschii exhibited a daily ration of 1% body C/d. Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400 µm, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory behaviour of krill will concentrate and elevate the grazing in specific areas of the euphotic zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Marine Isotope Stage (MIS) 11 (424-374 ka) was characterized by a protracted deglaciation and an unusually long climatic optimum. It remains unclear to what degree the climate development during this interglacial reflects the unusually weak orbital forcing or greenhouse gas trends. Previously, arguments about the duration and timing of the MIS11 climatic optimum and about the pace of the deglacial warming were based on a small number of key records, which appear to show regional differences. In order to obtain a global signal of climate evolution during MIS11, we compiled a database of 78 sea surface temperature (SST) records from 57 sites spanning MIS11, aligned these individually on the basis of benthic (N = 28) or planktonic (N = 31) stable oxygen isotope curves to a common time frame and subjected 48 of them to an empirical orthogonal function (EOF) analysis. The analysis revealed a high commonality among all records, with the principal SST trend explaining almost 49% of the variability. This trend indicates that on the global scale, the surface ocean underwent rapid deglacial warming during Termination V, in pace with carbon dioxide rise, followed by a broad SST optimum centered at ~410 kyr. The second EOF, which explained ~18% of the variability, revealed the existence of a different SST trend, characterized by a delayed onset of the temperature optimum during MIS11 at ~398 kyr, followed by a prolonged warm period lasting beyond 380 kyr. This trend is most consistently manifested in the mid-latitude North Atlantic and Mediterranean Sea and is here attributed to the strength of the Atlantic meridional overturning circulation. A sensitivity analysis indicates that these results are robust to record selection and to age-model uncertainties of up to 3-6 kyr, but more sensitive to SST seasonal attribution and SST uncertainties >1 °C. In order to validate the CCSM3 (Community Climate System Model, version 3) predictive potential, the annual and seasonal SST anomalies recorded in a total of 74 proxy records were compared with runs for three time slices representing orbital configuration extremes during the peak interglacial of MIS11. The modeled SST anomalies are characterized by a significantly lower variance compared to the reconstructions. Nevertheless, significant correlations between proxy and model data are found in comparisons on the seasonal basis, indicating that the model captures part of the long-term variability induced by astronomical forcing, which appears to have left a detectable signature in SST trends.