987 resultados para Magnetic Cores--Materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continental rise west of the Antarctic Peninsula includes a number of large sediment mounds interpreted as contourite drifts. Cores from six sediment drifts spanning some 650 km of the margin and 48 of latitude have been dated using chemical and isotopic tracers of palaeoproductivity and diatom biostratigraphy. Interglacial sedimentation rates range from 1.1 to 4.3 cm/ka. Glacial sedimentation rates range from 1.8 to 13.5 cm/ka, and decrease from proximal to distal sites on each drift. Late Quaternary sedimentation was cyclic, with brown, biogenic, burrowed mud containing ice-rafted debris (IRD) in interglacials and grey, barren, laminated mud in glacials. Foraminiferal intervals occur in interglacial stages 5 and 7 but not in the Holocene. Processes of terrigenous sediment supply during glacial stages differed; meltwater plumes were more important in stages 2-4, turbidity currents and ice-rafting in stage 6. The terrigenous component shows compositional changes along the margin, more marked in glacials. The major oxides Al2O3 and K2O are higher in the southwest, and CaO and TiO2 higher in the northeast. There is more smectite among the clay minerals in the northeast. Magnetic susceptibility varies along and between drifts. These changes reflect source variations along the margin. Interglacial sediments show less clear trends, and their IRD was derived from a wider area. Downslope processes were dominant in glacials, but alongslope processes may have attained equal importance in interglacials. The area contrasts with the East Antarctic continental slope in the SE Weddell Sea, where ice-rafting is the dominant process and where interglacial sedimentation rates are much higher than glacial. The differences in glacial setting and margin physiography can account for these contrasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laminated lake sediments from the Dead Sea basin provide high-resolution records of climatic variability in the eastern Mediterranean region, which is especially sensitive to changing climatic conditions. In this study, we aim on detailed reconstruction of climatic fluctuations and related changes in the frequency of flood and dust deposition events at ca. 3300 and especially at 2800 cal. yr BP from high-resolution sediment records of the Dead Sea basin. A ca. 4-m-thick, mostly varved sediment section from the western margin of the Dead Sea (DSEn - Ein Gedi profile) was analysed and correlated to the new International Continental Scientific Drilling Program (ICDP) Dead Sea Deep Drilling Project core 5017-1 from the deep basin. To detect even single event layers, we applied a multi-proxy approach of high-resolution microscopic thin section analyses, micro-X-ray fluorescence (µ-XRF) element scanning and magnetic susceptibility measurements, supported by grain size data and palynological analyses. Based on radiocarbon and varve dating, two pronounced dry periods were detected at ~3500-3300 and ~3000-2400 cal. yr BP which are differently expressed in the sediment records. In the shallow-water core (DSEn), the older dry period is characterised by a thick sand deposit, whereas the sedimentological change at 2800 cal. yr BP is less pronounced and characterised mainly by an enhanced frequency of coarse detrital layers interpreted as erosion events. In the 5017-1 deep-basin core, both dry periods are depicted by halite deposits. The onset of the younger dry period coincides with the Homeric Grand Solar Minimum at ca. 2800 cal. yr BP. Our results suggest that during this period, the Dead Sea region experienced an overall dry climate, superimposed by an increased occurrence of flash floods caused by a change in synoptic weather patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface-water d18O records of Neogloboquadrina pachyderma (left coiled); hence the surface-water d18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 yrs). For the Labrador Sea, sediment core logs contain important information about deep-water current velocities and also reflect the variable input of IRD from different sources as inferred from grain-size analysis, benthic d18O, the relation of density and p-wave velocity, and magnetic susceptibility. For the last glacial, faster deep-water currents which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted for a several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deep-water currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly after, while the abrupt atmospheric temperature rise happened after a larger time lag of >=1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial time scales but decoupling at orbital time scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined geophysical data from a Multi-Sensor Core Logger (MSCL), a logging device providing continuous measurements of gamma-ray attenuation, p-wave travel time, and magnetic susceptibility on marine sediment cores. In the first part we focused on the gamma-ray system and compared two different calibration methods. From the gamma-ray attenuation, we calculated densities and porosities by incorporating mass weighted attenuation coefficients. The application of an iteration method reduces the error of the density and porosity estimates compared to GRAPE data. In addition, we derived equations to calculate water content and dry bulk density from gamma-ray attenuation measurements. Comparison with physical properties determined on discrete samples revealed a very good correlation of both data sets (r = 0.99). This correlation is valid for sediments from substantially different geological settings (e.g., turbidites, hemipelagic muds, and opal-rich sediments). In the second part we applied our data to marine geological questions. For sediments from the Antarctic Polar Frontal Zone, there is indication that the content of biogenic opal can be assessed using a correlation of density and p-wave velocity. For sediments from the Bengal Fan, the relationship between the MSCL acoustic impedance (the product of density and p-wave velocity) and the grain-size distribution in discrete samples can be used to predict clay and sand/silt ratios for sediment cores from the shelf and upper continental slope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtained sediment physical properties and geochemical data from 47 piston and gravity cores located in the Bay of Bengal, to study the complex history of the Late Pleistocene run-off from the Ganges and Brahmaputra rivers and its imprint on the Bengal Fan. Grain-size parameters were predicted from core logs of density and velocity to infer sediment transport energy and to distinguish different environments along the 3000-km-long transport path from the delta platform to the lower fan. On the shelf, 27 cores indicate rapidly prograding delta foresets today that contain primarily mud, whereas outer shelf sediment has 25% higher silt contents, indicative of stronger and more stable transport regime, which prevent deposition and expose a Late Pleistocene relic surface. Deposition is currently directed towards the shelf canyon 'Swatch of No Ground', where turbidites are released to the only channel-levee system that is active on the fan during the Holocene. Active growth of the channel-levee system occurred throughout sea-level rise and highstand with a distinct growth phase at the end of the Younger Dryas. Coarse-grained material bypasses the upper fan and upper parts of the middle fan, where particle flow is enhanced as a result of flow-restriction in well-defined channels. Sandier material is deposited mainly as sheet-flow deposits on turbidite-dominated plains at the lower fan. The currently most active part of the fan with 10-40 cm thick turbidites is documented for the central channel including inner levees (e.g., site 40). Site 47 from the lower fan far to the east of the active channel-levee system indicates the end of turbidite sedimentation at 300 ka for that location. That time corresponds to the sea-level lowering during late isotopic stage 9 when sediment supply to the fan increased and led to channel avulsion farther upstream, probably indicating a close relation of climate variability and fan activity. Pelagic deep-sea sites 22 and 28 contain a 630-kyear record of climate response to orbital forcing with dominant 21- and 41-kyear cycles for carbonate and magnetic susceptibility, respectively, pointing to teleconnections of low-latitude monsoonal forcing on the precession band to high-latitude obliquity forcing. Upper slope sites 115, 124, and 126 contain a record of the response to high-frequency climate change in the Dansgaard-Oeschger bands during the last glacial cycle with shared frequencies between 0.75 and 2.5 kyear. Correlation of highs in Bengal Fan physical properties to lows in the d18O record of the GISP2 ice-core suggests that times of greater sediment transport energy in the Bay of Bengal are associated with cooler air temperatures over Greenland. Teleconnections were probably established through moisture and other greenhouse-gas forcing that could have been initiated by instabilities in the methane hydrate reservoir in the oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiocarbon and 230Thexcess data from six NE Atlantic box cores are considered. The cores form a transect from the Porcupine Abyssal Plain over the East Thulean Rise to the southern end of Feni Drift. The chronology for the cores is established from bulk sediment carbonate radiocarbon data and reveals that sections exhibiting constant accumulation rates can be identified in all the cores, with rates of 3.0-3.5 cm/kyr on the plain through the Holocene and late Holocene rates of 4.3-6.6 cm/kyr elsewhere. Five out of the six cores show accumulations of more 230Thexcess than is produced in the overlying water column, with the greatest inventories (up to 225% of production) in the cores from the rise and drift. A size fraction comparison between two cores from the plain and rise reveals that the higher overall accumulation rates and 230Thexcess inventories in the off-plain cores are due to an increased fine (<5 µm) component fraction, whereas the flux of coarser material is similar to that received on the plain. This suggests that the higher fluxes of materials observed are physically (rather than biogeochemically) driven and also that drift formation has been continuously active in the late Holocene. Sections of all the cores where regular accumulation is defined by the radiocarbon data are modeled first by a linear radiocarbon age/depth model and second by a constant rain (230Thexcess)0 model prorated for the observed core inventories. These modeling approaches yield historical mass accumulation rate estimates which are generally in reasonable agreement (±30%), but the differences observed appear to be well organized in time rather than random.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple holes were cored at Ocean Drilling Program Leg 178 Sites 1098 and 1099 in two subbasins of the Palmer Deep in order to recover complete and continuous records of sedimentation. By correlating measured properties of cores from different holes at a site, we have established a common depth scale, referred to as the meters composite depth scale (mcd), for all cores from Site 1098. For Site 1098, distinct similarities in the magnetic susceptibility records obtained from three holes provide tight constraints on between-hole correlation. Additional constraints come from lithologic features. Specific intervals from other data sets, particularly gamma-ray attenuation bulk density, magnetic intensity, and color reflectance, contain distinctive anomalies that correlate well when placed into the preferred composite depth scale, confirming that the scale is accurate. Coring in two holes at Site 1099 provides only a few meters of overlap. None of the data sets within this limited overlap region provide convincing correlations. Thus, the preferred composite depth scale for Site 1099 is the existing depth scale in meters below seafloor (mbsf).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The UK37' index has proven to be a robust proxy to estimate past sea surface temperatures (SSTs) over a range of time scales, but like any other proxy, it has uncertainties. For instance, in reconstructions of the Last Glacial Maximum (LGM) in the northern North Atlantic, UK37' indicates higher temperatures than those derived from foraminiferal proxies. Here we evaluate whether such warm glacial estimates are caused by the advection of reworked alkenones in ice-rafted debris (IRD) to deep-sea sediments. We have quantified both coccolith assemblages and alkenones in sediments from glaciogenic debris flows in the continental margins of the northern North Atlantic, and from a deep-sea core from the Reykjanes Ridge. Certain debris flow deposits in the North Atlantic were generated by the presence of massive ice-sheets in the past, and their associated ice streams. Such deposits are composed of the same materials that were present in the IRD at the time they were generated. We conclude that ice rafting from some locations was a transport pathway to the deep sea floor of reworked alkenones and pre-Quaternary coccolith species during glacial stages, but that not all of the IRD contained alkenones, even when reworked coccoliths were present. We speculate that the ratio of reworked coccoliths to alkenone concentration might be useful to infer whether significant reworked alkenone inputs from IRD did occur at a particular site in the glacial North Atlantic. We also observe that alkenones in some of the debris flows contain a colder signal than estimated for LGM sediments in the northern North Atlantic. This is also clear in the deep-sea core studied where the warmest intervals do not correspond to the intervals with large inputs of reworked coccoliths or IRD. We conclude that any possible bias to UK37' estimates associated with reworked alkenones is not necessarily towards higher values, and that the high SST anomalies for the LGM are unlikely to be the result of a bias caused by IRD inputs.