957 resultados para Macular pigment optical density
Resumo:
Age-related macular degeneration (AMD) is the most common cause of incurable visual impairment in high-income countries. Previous studies report inconsistent associations between AMD and apolipoprotein E (APOE), a lipid transport protein involved in low-density cholesterol modulation. Potential interaction between APOE and sex, and smoking status has been reported. We present a pooled analysis (n = 21,160) demonstrating associations between late AMD and APOe4 (odds ratio [OR] = 0.72 per haplotype; confidence interval [CI]: 0.65-0.74; P = 4.41×10(-11) ) and APOe2 (OR = 1.83 for homozygote carriers; CI: 1.04-3.23; P = 0.04), following adjustment for age group and sex within each study and smoking status. No evidence of interaction between APOE and sex or smoking was found. Ever smokers had significant increased risk relative to never smokers for both neovascular (OR = 1.54; CI: 1.38-1.72; P = 2.8×10(-15) ) and atrophic (OR = 1.38; CI: 1.18-1.61; P = 3.37×10(-5) ) AMD but not early AMD (OR = 0.94; CI: 0.86-1.03; P = 0.16), implicating smoking as a major contributing factor to disease progression from early signs to the visually disabling late forms. Extended haplotype analysis incorporating rs405509 did not identify additional risks beyond e2 and e4 haplotypes. Our expanded analysis substantially improves our understanding of the association between the APOE locus and AMD. It further provides evidence supporting the role of cholesterol modulation, and low-density cholesterol specifically, in AMD disease etiology.
Resumo:
The microkinetics based on density function theory (DFT) calculations is utilized to investigate the reaction mechanism of crotonaldehyde hydrogenation on Pt(111) in the free energy landscape. The dominant reaction channel of each hydrogenation product is identified. Each of them begins with the first surface hydrogenation of the carbonyl oxygen of crotonaldehyde on the surface. A new mechanism, 1,4-addition mechanism generating enols (butenol), which readily tautomerize to saturated aldehydes (butanal), is identified as a primary mechanism to yield saturated aldehydes instead of the 3,4-addition via direct hydrogenation of the ethylenic bond. The calculation results also show that the full hydrogenation product, butylalcohol, mainly stems from the deep hydrogenation of surface open-shell dihydrogenation intermediates. It is found that the apparent barriers of the dominant pathways to yield three final products are similar on P(111), which makes it difficult to achieve a high selectivity to the desired crotyl alcohol (COL).
Resumo:
Purpose The retinal pigment epithelium (RPE) and underlying Bruch’s membrane undergo significant modulation during ageing. Progressive, age-related modifications of lipids and proteins by advanced glycation end products (AGEs) at this cell–substrate interface have been implicated in RPE dysfunction and the progression to age-related macular degeneration (AMD). The pathogenic nature of these adducts in Bruch’s membrane and their influence on the overlying RPE remains unclear. This study aimed to identify alterations in RPE protein expression in cells exposed to AGE-modified basement membrane (AGE-BM), to determine how this “aged” substrate impacts RPE function and to map the localisation of identified proteins in ageing retina. Methods Confluent ARPE-19 monolayers were cultured on AGE-BM and native, non-modified BM (BM). Following 28-day incubation, the proteome was profiled using 2-dimensional gel electrophoresis (2D), densitometry and image analysis was employed to map proteins of interest that were identified by electrospray ionisation mass spectrometry (ESI MS/MS). Immunocytochemistry was employed to localise identified proteins in ARPE-19 monolayers cultured on unmodified and AGE-BM and to analyze aged human retina. Results Image analysis detected altered protein spot densities between treatment groups, and proteins of interest were identified by LC ESI MS/MS which included heat-shock proteins, cytoskeletal and metabolic regulators. Immunocytochemistry revealed deubiquitinating enzyme ubiquitin carboxyterminal hydrolase-1 (UCH-L1), which was upregulated in AGE-exposed RPE and was also localised to RPE in human retinal sections. Conclusions This study has demonstrated that AGE-modification of basement membrane alters the RPE proteome. Many proteins are changed in this ageing model, including UCHL-1, which could impact upon RPE degradative capacity. Accumulation of AGEs at Bruch”s membrane could play a significant role in age-related dysfunction of the RPE.
Resumo:
This study employs density functional theory (DFT) calculations to examine the mechanism by which acetaldehyde is formed on platinum in a typical direct ethanol fuel cell (DEFC). A pathway is found involving the formation of a strongly hydrogen-bonded complex between adsorbed ethanol and the surface hydroxyl (OH) species, followed by the facile alpha-dehydrogenation of ethanol, with spontaneous weakening of the hydrogen bond in favor of adsorbed acetaldehyde and water. This mechanism is found to be comparably viable on both the close-packed surface and the monatomic steps. Comparison of further reactions on these two sites strongly indicates that the steps act as net removers of acetaldehyde from the product stream, while the flat surface acts as a net producer.
Resumo:
Comparisons between experimentally measured time-dependent electron energy distribution functions and optical emission intensities are reported for low-frequency (100 and 400 kHz) radio-frequency driven discharges in argon. The electron energy distribution functions were measured with a time-resolved Langmuir probe system. Time-resolved optical emissions of argon resonance lines at 687.1 and 750.4 nm were determined by photon-counting methods. Known ground-state and metastable-state excitation cross sections were used along with the measured electron energy distribution functions to calculate the time dependence of the optical emission intensity. It was found that a calculation using only the ground-state cross sections gave the best agreement with the time dependence of the measured optical emission. Time-dependent electron density, electron temperature, and plasma potential measurements are also reported.
Resumo:
PURPOSE:To examine associations between recognized genetic susceptibility loci and angiographic subphenotypes of the neovascular variant of age-related macular degeneration (nvAMD).METHODS:Participants (247 nvAMD, 52 early age-related macular degeneration [AMD], and 103 controls) were genotyped (complement factor H and ARMS2/HTRA1). nvAMD participants were assigned to one of two subcategories: mainly classic or mainly occult (based on the proportions of classic and occult choroidal neovascularization). nvAMD and early AMD were reassigned to two groups based on the extent and severity of drusen (retinal pigment epithelium dysfunction or not). Univariate and multivariate analysis were used to examine for associations between participant characteristics and genetic loci after adjusting for age, smoking status, and history of cardiovascular disease.RESULTS:Univariate analysis confirmed the known significant associations between AMD stage and age, hypertension, and a history of cardiovascular disease. Those with retinal pigment epithelium dysfunction (F = 5.46; P = 0.02) or a positive smoking history (F = 3.89; P = 0.05) were more likely to have been classified as having mainly an occult rather than a mainly classic lesion. Multivariate analysis showed that significant associations were noted with the number of ARMS2/HTRA1 risk alleles (P
Resumo:
We have performed density functional theory (DFT) calculations to investigate the reaction mechanism of the cleavage of the carbonyl bond in amides on both flat and stepped Ru surfaces. The simplest amide molecule, N,N-dimethylacetamide (DMA), was used as the exemplar model molecule. Through the calculations, the most stable transition states (TSs) in all the pathways on both flat and stepped Ru surfaces are identified. Comparing the energy profiles of different reaction pathways, we find that a direct cleavage mechanism is always energetically favored as compared with an alternative hydrogen-induced mechanism on either the flat or stepped Ru surface. It is easier for the dissociation process to occur on the stepped surface than on the flat surface. However, as compared with the terrace, the superiority of step sites boosting the C-O bond dissociation is not as evident as that on CO dissociation.
Resumo:
Aim: To determine the sensitivity and specificity of the non-invasive imaging technique, fundus autofluorescence (AF), in the diagnosis of cystoid macular oedema (CMO), using fluorescein angiography as the reference standard. Design: Retrospective, consecutive, observational case series. Methods: Ninety-six consecutive patients with CMO suspected clinically were selected from the AF database of the Retina Unit, Ophthalmology Department, Grampian University Hospitals-NHS Trust, between August 2004 and June 2006. Only patients in whom CMO was secondary to (1) cataract extraction, (2) inherited retinopathies, (3) inflammatory eye disease or (4) idiopathic cases were included in this study. Only patients in whom AF images had been performed within 2 weeks of FFA and, when obtained following FFA, there was a minimum gap of 4 days ("washing out" period), were considered eligible for this study. A total of 34 eyes from 34 patients were eligible and were included in this study. FFA was used as the reference test to confirm the presence of CMO, and, based on fluorescein angiography (FFA), CMO was graded as either mild or florid. AF images were examined in a masked fashion for the presence or absence of CMO. The sensitivity and specificity of AF in detecting CMO were then calculated. Results: CMO was seen on AF imaging as round or oval areas at the fovea with an AF signal similar to that of background levels. At this site (fovea), the AF signal is usually reduced compared with background, due to the blockage caused by luteal pigment. The diagnosis of CMO based on AF imaging had 81% sensitivity and 69% specificity when compared with the reference standard FFA. Based on the FFA, there were 12 cases of florid CMO and eight of mild CMO. Of the former, CMO was detected with AF imaging in 100% (12/12 eyes), and of the latter, in 50% (4/8 eyes). Conclusions: AF imaging can be used as a rapid, non-invasive technique in the diagnosis of CMO.
Resumo:
Aim: To evaluate the distribution of fundus autofluorescence in patients with age-related macular degeneration and choroidal neovascularisation (CNV). Methods: Colour fundus photographs, fundus fluorescein angiograms (FFA) and fundus autofluorescence images were obtained from a group of 40 patients (43 eyes) with age-related macular degeneration and purely classic or occult CNV. Only patients with newly diagnosed CNV and in whom autofluorescence images were obtained within 2 weeks from FFA were included. The distribution of autofluorescence was qualitatively evaluated, and the findings compared with those from colour fundus photographs and FFA. Results: 29 (67%) eyes had classic CNV and 14 (33%) had occult CNV. In 26 (90%) eyes with classic CNV, a low autofluorescence signal was detected at the site of the CNV; in 7 (50%) eyes with occult CNV, multiple foci of low autofluorescence signal were detected. Outside the area affected by the lesion, homogeneous autofluorescence was observed in most of the cases (n = 33, 77%). Similarly, homogeneous autofluorescence was commonly observed in fellow eyes (62%). A pattern of focal increased autofluorescence was rarely seen in eyes with CNV (n = 4, 9%) or in fellow eyes (n = 4, 15%). In 11 of 43 (25%) eyes, areas of increased autofluorescence, other than a pattern of focal increased autofluorescence, were detected. In four patients, autofluorescence images had been obtained before the development of CNV; in none was any increased autofluorescence detected before the formation of CNV. Conclusions: Distinct patterns of autofluorescence were observed in eyes with pure classic and occult CNV. Increased autofluorescence was rarely seen in eyes with CNV and in fellow eyes, suggesting that increased autofluorescence, and thus, retinal pigment epithelium lipofuscin, may not play an essential part in the formation of CNV.
Resumo:
• PURPOSE: To evaluate retinal pigment epithelial (RPE) atrophy in patients with Stargardt disease using autofluorescence imaging (AF). • DESIGN: Retrospective observational case series. • METHODS: Demographics, best-corrected visual acuity (BCVA), AF images, and electrophysiology responses (group 1, macular dysfunction; group 2, macula + cone dysfunction; group 3, macula + cone-rod dysfunction) were evaluated at presentation and follow-up in a group of 12 patients (24 eyes) with Stargardt disease. The existence, development, and rate of enlargement of areas of RPE atrophy over time were evaluated using AF imaging. A linear regression model was used to investigate the effects of AF and electrophysiology on rate of atrophy enlargement and BCVA, adjusting for age of onset and duration of disease. • RESULTS: Eight male and 4 female patients (median age 42 years; range 24-69 years) were followed for a median of 41.5 months (range 13-66 months). All 12 patients had reduced AF compatible with RPE atrophy at presentation and in all patients the atrophy enlarged during follow-up. The mean rate of atrophy enlargement for all patients was 1.58 mm /y (SD 1.25 mm /y; range 0.13-5.27 mm /y). Only the pattern of functional loss present as detected by electrophysiology was statistically significantly associated with the rate of atrophy enlargement when correcting for other variables (P <.001), with patients in group 3 (macula + cone-rod dysfunction) having the fastest rate of atrophy enlargement (1.97 mm /y, SD 0.70 mm /y) (group 1 [macula] 1.09 mm /y, SD 0.53 mm /y; group 2 [macula + cone] 1.89 mm /y, SD 2.27 mm /y). • CONCLUSION: Variable rates of atrophy enlargement were observed in patients with Stargardt disease. The pattern of functional loss detected on electrophysiology was strongly associated with the rate of atrophy enlargement over time, thus serving as the best prognostic indicator for patients with this inherited retinal disease. © 2012 Elsevier Inc. All rights reserved.
Resumo:
PURPOSE: To describe fundus autofluorescence (AF) patterns and their change over time in patients with age-related macular degeneration (AMD) and high risk of visual loss participating in the drusen laser study (DLS). DESIGN: Randomized clinical trial. METHODS: The study population consisted of 29 patients (35 eyes) participating in the DLS, which is a prospective, randomized, controlled clinical trial of prophylactic laser therapy in patients with AMD and high risk of neovascular complications. The intervention consisted of 16 eyes having prophylactic laser and 19 receiving no treatment. The main outcome measures were changes in the distribution of drusen and AF. Patients were reviewed for a median follow-up or 24 months (range 12-36 months). RESULTS: At baseline, four patterns of fundus AF were recognized: focal increased AF (n = 18), reticular AF (n = 3), combined focal and reticular AF (n = 2), and homogeneous AF (n = 12). At last follow-up, fundus AF remained unchanged in 15 untreated (78%) and in seven treated (43%) eyes. In only one untreated eye, focal areas of increased AF returned to background levels and were no longer detectable at last follow-up, compared with six treated eyes. This difference was statistically significant (P = .03). Only large foveal soft drusen (drusenoid pigment epithelium detachments) consistently corresponded with focal changes in AF, whereas no obvious correspondence was found between small soft drusen located elsewhere and changes in AF. CONCLUSION: The lack of obvious correspondence between the distribution of drusen and of AF found in this study appears to indicate that drusen and AF represent independent measures of aging in the posterior pole. © 2002 Elsevier Science Inc. All rights reserved.
Resumo:
We have carried out optical Thomson scattering measurements from a laser induced breakdown in He at 1 atmosphere. The breakdown was created with a Nd:YAG laser with 9ns pulse duration and 400mJ pulse energy focused into a chamber filled with He. A second harmonic Nd: YAG laser with 9ns pulses and up to 80mJ energy was used to obtain temporally and spatially resolved data on the electron density and temperature. In parallel experiments, we measured the emission of the 447.1nm line from He I. Initial results suggest good agreement between densities inferred but full Abel inversion is needed for conclusive results.
Resumo:
Whilst data recognise both myeloid cell accumulation during choroidal neovascularisation (CNV) as well as complement activation, none of the data has presented a clear explanation for the angiogenic drive that promotes pathological angiogenesis. One possibility that is a pre-eminent drive is a specific and early conditioning and activation of the myeloid cell infiltrate. Using a laser-induced CNV murine model, we have identified that disruption of retinal pigment epithelium (RPE) and Bruch's membrane resulted in an early recruitment of macrophages derived from monocytes and microglia, prior to angiogenesis and contemporaneous with lesional complement activation. Early recruited CD11b(+) cells expressed a definitive gene signature of selective inflammatory mediators particularly a pronounced Arg-1 expression. Accumulating macrophages from retina and peripheral blood were activated at the site of injury, displaying enhanced VEGF expression, and notably prior to exaggerated VEGF expression from RPE, or earliest stages of angiogenesis. All of these initial events, including distinct VEGF (+) Arg-1(+) myeloid cells, subsided when CNV was established and at the time RPE-VEGF expression was maximal. Depletion of inflammatory CCR2-positive monocytes confirmed origin of infiltrating monocyte Arg-1 expression, as following depletion Arg-1 signal was lost and CNV suppressed. Furthermore, our in vitro data supported a myeloid cell uptake of damaged RPE or its derivatives as a mechanism generating VEGF (+) Arg-1(+) phenotype in vivo. Our results reveal a potential early driver initiating angiogenesis via myeloid-derived VEGF drive following uptake of damaged RPE and deliver an explanation of why CNV develops during any of the stages of macular degeneration and can be explored further for therapeutic gain.
Resumo:
Aim: Investigate RPE resurfacing by changes in fundus autofluorescence (AF) in patients with retinal pigment epithelial (RPE) tears secondary to age-related macular degeneration (AMD).
Methods: A retrospective case series of patients presenting with RPE tears from 1 March 2008 to 1 April 2011. The pattern and area of AF signal distribution in RPE tears were evaluated. The change in the size of the area of debrided RPE over the follow-up period was used as the main outcome measure. A reduction in this area was termed “RPE resurfacing”, and an enlargement termed “progression of RPE cell loss”.
Results; Thirteen patients (14 eyes) with RPE tears (mean age 82 years) were included in this study. The mean baseline area of reduced AF signal was 4.1 mm2 (range 0.33–14.9, median 0.29). “Resurfacing” of the RPE occurred in ten eyes and “progression of RPE cell loss” in four eyes after a median follow-up of 11.5 months (range, 1–39). The mean area of healing was 2.0 mm2, and progression was 1.78 mm2.
Conclusion: A consistent AF pattern was observed in patients with RPE tears. RPE resurfacing over the area of the RPE tear occurred, to a varying degree, in the majority of the cases.
Resumo:
We investigate the magneto-optical properties of a nanostructured metamaterial comprised of arrays of nickel nanorods embedded in an anodized aluminum oxide template. The rods are grown using a self-assembly bottom-up technique that provides a uniform, quasi-hexagonal array over a large area, quickly and at low cost. The tuneability of the magneto-optic response of the material is investigated by varying the nanorod dimensions: diameter, length and inter-rod spacing as well as the overall thickness of the template. It is demonstrated that the system acts as a sub-wavelength light trap with enhanced magneto-optical properties occurring at reflectivity minima corresponding to photonic resonances of the metamaterial. Changes in dimensions of the nickel rods on the order of tens of nanometers cause a spectral blue-shift in the peak magneto-optical response of 270 nm in the visible range. A plasmonic enhancement is also observed at lower wavelengths, which becomes increasingly damped with larger diameters and increased volume fraction of nickel inclusions. This type of structure has potential applications in high density magneto-optical data storage (up to 1011–12 rods per square inch), ultrafast magneto-plasmonic switching and optical components for telecommunications.