911 resultados para Machine Learning,Natural Language Processing,Descriptive Text Mining,POIROT,Transformer
Resumo:
BACKGROUND: Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI) format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions. RESULTS: The HUPO-PSI has further developed the PSI-MI XML schema to enable the description of interactions between a wider range of molecular types, for example nucleic acids, chemical entities, and molecular complexes. Extensive details about each supported molecular interaction can now be captured, including the biological role of each molecule within that interaction, detailed description of interacting domains, and the kinetic parameters of the interaction. The format is supported by data management and analysis tools and has been adopted by major interaction data providers. Additionally, a simpler, tab-delimited format MITAB2.5 has been developed for the benefit of users who require only minimal information in an easy to access configuration. CONCLUSION: The PSI-MI XML2.5 and MITAB2.5 formats have been jointly developed by interaction data producers and providers from both the academic and commercial sector, and are already widely implemented and well supported by an active development community. PSI-MI XML2.5 enables the description of highly detailed molecular interaction data and facilitates data exchange between databases and users without loss of information. MITAB2.5 is a simpler format appropriate for fast Perl parsing or loading into Microsoft Excel.
Resumo:
By providing a better understanding of paraphrase and coreference in terms of similarities and differences in their linguistic nature, this article delimits what the focus of paraphrase extraction and coreference resolution tasks should be, and to what extent they can help each other. We argue for the relevance of this discussion to Natural Language Processing.
Resumo:
Finding an adequate paraphrase representation formalism is a challenging issue in Natural Language Processing. In this paper, we analyse the performance of Tree Edit Distance as a paraphrase representation baseline. Our experiments using Edit Distance Textual Entailment Suite show that, as Tree Edit Distance consists of a purely syntactic approach, paraphrase alternations not based on structural reorganizations do not find an adequate representation. They also show that there is much scope for better modelling of the way trees are aligned.
Resumo:
In this paper, we present a critical analysis of the state of the art in the definition and typologies of paraphrasing. This analysis shows that there exists no characterization of paraphrasing that is comprehensive, linguistically based and computationally tractable at the same time. The following sets out to define and delimit the concept on the basis of the propositional content. We present a general, inclusive and computationally oriented typology of the linguistic mechanisms that give rise to form variations between paraphrase pairs.
Resumo:
In this paper we present ClInt (Clinical Interview), a bilingual Spanish-Catalan spoken corpus that contains 15 hours of clinical interviews. It consists of audio files aligned with multiple-level transcriptions comprising orthographic, phonetic and morphological information, as well as linguistic and extralinguistic encoding. This is a previously non-existent resource for these languages and it offers a wide-ranging exploitation potential in a broad variety of disciplines such as Linguistics, Natural Language Processing and related fields.
Resumo:
CoCo is a collaborative web interface for the compilation of linguistic resources. In this demo we are presenting one of its possible applications: paraphrase acquisition.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Le dictionnaire LVF (Les Verbes Français) de J. Dubois et F. Dubois-Charlier représente une des ressources lexicales les plus importantes dans la langue française qui est caractérisée par une description sémantique et syntaxique très pertinente. Le LVF a été mis disponible sous un format XML pour rendre l’accès aux informations plus commode pour les applications informatiques telles que les applications de traitement automatique de la langue française. Avec l’émergence du web sémantique et la diffusion rapide de ses technologies et standards tels que XML, RDF/RDFS et OWL, il serait intéressant de représenter LVF en un langage plus formalisé afin de mieux l’exploiter par les applications du traitement automatique de la langue ou du web sémantique. Nous en présentons dans ce mémoire une version ontologique OWL en détaillant le processus de transformation de la version XML à OWL et nous en démontrons son utilisation dans le domaine du traitement automatique de la langue avec une application d’annotation sémantique développée dans GATE.
Resumo:
The goal of this work is to develop an Open Agent Architecture for Multilingual information retrieval from Relational Database. The query for information retrieval can be given in plain Hindi or Malayalam; two prominent regional languages of India. The system supports distributed processing of user requests through collaborating agents. Natural language processing techniques are used for meaning extraction from the plain query and information is given back to the user in his/ her native language. The system architecture is designed in a structured way so that it can be adapted to other regional languages of India
Resumo:
Ontologies have been established for knowledge sharing and are widely used as a means for conceptually structuring domains of interest. With the growing usage of ontologies, the problem of overlapping knowledge in a common domain becomes critical. In this short paper, we address two methods for merging ontologies based on Formal Concept Analysis: FCA-Merge and ONTEX. --- FCA-Merge is a method for merging ontologies following a bottom-up approach which offers a structural description of the merging process. The method is guided by application-specific instances of the given source ontologies. We apply techniques from natural language processing and formal concept analysis to derive a lattice of concepts as a structural result of FCA-Merge. The generated result is then explored and transformed into the merged ontology with human interaction. --- ONTEX is a method for systematically structuring the top-down level of ontologies. It is based on an interactive, top-down- knowledge acquisition process, which assures that the knowledge engineer considers all possible cases while avoiding redundant acquisition. The method is suited especially for creating/merging the top part(s) of the ontologies, where high accuracy is required, and for supporting the merging of two (or more) ontologies on that level.
Resumo:
During the past few years, there has been much discussion of a shift from rule-based systems to principle-based systems for natural language processing. This paper outlines the major computational advantages of principle-based parsing, its differences from the usual rule-based approach, and surveys several existing principle-based parsing systems used for handling languages as diverse as Warlpiri, English, and Spanish, as well as language translation.
Resumo:
The goal of the work reported here is to capture the commonsense knowledge of non-expert human contributors. Achieving this goal will enable more intelligent human-computer interfaces and pave the way for computers to reason about our world. In the domain of natural language processing, it will provide the world knowledge much needed for semantic processing of natural language. To acquire knowledge from contributors not trained in knowledge engineering, I take the following four steps: (i) develop a knowledge representation (KR) model for simple assertions in natural language, (ii) introduce cumulative analogy, a class of nearest-neighbor based analogical reasoning algorithms over this representation, (iii) argue that cumulative analogy is well suited for knowledge acquisition (KA) based on a theoretical analysis of effectiveness of KA with this approach, and (iv) test the KR model and the effectiveness of the cumulative analogy algorithms empirically. To investigate effectiveness of cumulative analogy for KA empirically, Learner, an open source system for KA by cumulative analogy has been implemented, deployed, and evaluated. (The site "1001 Questions," is available at http://teach-computers.org/learner.html). Learner acquires assertion-level knowledge by constructing shallow semantic analogies between a KA topic and its nearest neighbors and posing these analogies as natural language questions to human contributors. Suppose, for example, that based on the knowledge about "newspapers" already present in the knowledge base, Learner judges "newspaper" to be similar to "book" and "magazine." Further suppose that assertions "books contain information" and "magazines contain information" are also already in the knowledge base. Then Learner will use cumulative analogy from the similar topics to ask humans whether "newspapers contain information." Because similarity between topics is computed based on what is already known about them, Learner exhibits bootstrapping behavior --- the quality of its questions improves as it gathers more knowledge. By summing evidence for and against posing any given question, Learner also exhibits noise tolerance, limiting the effect of incorrect similarities. The KA power of shallow semantic analogy from nearest neighbors is one of the main findings of this thesis. I perform an analysis of commonsense knowledge collected by another research effort that did not rely on analogical reasoning and demonstrate that indeed there is sufficient amount of correlation in the knowledge base to motivate using cumulative analogy from nearest neighbors as a KA method. Empirically, evaluating the percentages of questions answered affirmatively, negatively and judged to be nonsensical in the cumulative analogy case compares favorably with the baseline, no-similarity case that relies on random objects rather than nearest neighbors. Of the questions generated by cumulative analogy, contributors answered 45% affirmatively, 28% negatively and marked 13% as nonsensical; in the control, no-similarity case 8% of questions were answered affirmatively, 60% negatively and 26% were marked as nonsensical.
Resumo:
Real-time geoparsing of social media streams (e.g. Twitter, YouTube, Instagram, Flickr, FourSquare) is providing a new 'virtual sensor' capability to end users such as emergency response agencies (e.g. Tsunami early warning centres, Civil protection authorities) and news agencies (e.g. Deutsche Welle, BBC News). Challenges in this area include scaling up natural language processing (NLP) and information retrieval (IR) approaches to handle real-time traffic volumes, reducing false positives, creating real-time infographic displays useful for effective decision support and providing support for trust and credibility analysis using geosemantics. I will present in this seminar on-going work by the IT Innovation Centre over the last 4 years (TRIDEC and REVEAL FP7 projects) in building such systems, and highlights our research towards improving trustworthy and credible of crisis map displays and real-time analytics for trending topics and influential social networks during major news worthy events.
Resumo:
Accurate single trial P300 classification lends itself to fast and accurate control of Brain Computer Interfaces (BCIs). Highly accurate classification of single trial P300 ERPs is achieved by characterizing the EEG via corresponding stationary and time-varying Wackermann parameters. Subsets of maximally discriminating parameters are then selected using the Network Clustering feature selection algorithm and classified with Naive-Bayes and Linear Discriminant Analysis classifiers. Hence the method is assessed on two different data-sets from BCI competitions and is shown to produce accuracies of between approximately 70% and 85%. This is promising for the use of Wackermann parameters as features in the classification of single-trial ERP responses.