994 resultados para MULTIPLE SOLUTIONS
Resumo:
In this paper, we present a deterministic approach to tsunami hazard assessment for the city and harbour of Sines, Portugal, one of the test sites of project ASTARTE (Assessment, STrategy And Risk Reduction for Tsunamis in Europe). Sines has one of the most important deep-water ports, which has oil-bearing, petrochemical, liquid-bulk, coal, and container terminals. The port and its industrial infrastructures face the ocean southwest towards the main seismogenic sources. This work considers two different seismic zones: the Southwest Iberian Margin and the Gloria Fault. Within these two regions, we selected a total of six scenarios to assess the tsunami impact at the test site. The tsunami simulations are computed using NSWING, a Non-linear Shallow Water model wIth Nested Grids. In this study, the static effect of tides is analysed for three different tidal stages: MLLW (mean lower low water), MSL (mean sea level), and MHHW (mean higher high water). For each scenario, the tsunami hazard is described by maximum values of wave height, flow depth, drawback, maximum inundation area and run-up. Synthetic waveforms are computed at virtual tide gauges at specific locations outside and inside the harbour. The final results describe the impact at the Sines test site considering the single scenarios at mean sea level, the aggregate scenario, and the influence of the tide on the aggregate scenario. The results confirm the composite source of Horseshoe and Marques de Pombal faults as the worst-case scenario, with wave heights of over 10 m, which reach the coast approximately 22 min after the rupture. It dominates the aggregate scenario by about 60 % of the impact area at the test site, considering maximum wave height and maximum flow depth. The HSMPF scenario inundates a total area of 3.5 km2. © Author(s) 2015.
Resumo:
Materials selection is a matter of great importance to engineering design and software tools are valuable to inform decisions in the early stages of product development. However, when a set of alternative materials is available for the different parts a product is made of, the question of what optimal material mix to choose for a group of parts is not trivial. The engineer/designer therefore goes about this in a part-by-part procedure. Optimizing each part per se can lead to a global sub-optimal solution from the product point of view. An optimization procedure to deal with products with multiple parts, each with discrete design variables, and able to determine the optimal solution assuming different objectives is therefore needed. To solve this multiobjective optimization problem, a new routine based on Direct MultiSearch (DMS) algorithm is created. Results from the Pareto front can help the designer to align his/hers materials selection for a complete set of materials with product attribute objectives, depending on the relative importance of each objective.
Resumo:
In this article we analytically solve the Hindmarsh-Rose model (Proc R Soc Lond B221:87-102, 1984) by means of a technique developed for strongly nonlinear problems-the step homotopy analysis method. This analytical algorithm, based on a modification of the standard homotopy analysis method, allows us to obtain a one-parameter family of explicit series solutions for the studied neuronal model. The Hindmarsh-Rose system represents a paradigmatic example of models developed to qualitatively reproduce the electrical activity of cell membranes. By using the homotopy solutions, we investigate the dynamical effect of two chosen biologically meaningful bifurcation parameters: the injected current I and the parameter r, representing the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics). The auxiliary parameter involved in the analytical method provides us with an elegant way to ensure convergent series solutions of the neuronal model. Our analytical results are found to be in excellent agreement with the numerical simulations.
Resumo:
An improved class of nonlinear bidirectional Boussinesq equations of sixth order using a wave surface elevation formulation is derived. Exact travelling wave solutions for the proposed class of nonlinear evolution equations are deduced. A new exact travelling wave solution is found which is the uniform limit of a geometric series. The ratio of this series is proportional to a classical soliton-type solution of the form of the square of a hyperbolic secant function. This happens for some values of the wave propagation velocity. However, there are other values of this velocity which display this new type of soliton, but the classical soliton structure vanishes in some regions of the domain. Exact solutions of the form of the square of the classical soliton are also deduced. In some cases, we find that the ratio between the amplitude of this wave and the amplitude of the classical soliton is equal to 35/36. It is shown that different families of travelling wave solutions are associated with different values of the parameters introduced in the improved equations.
Resumo:
In the last decade, local image features have been widely used in robot visual localization. In order to assess image similarity, a strategy exploiting these features compares raw descriptors extracted from the current image with those in the models of places. This paper addresses the ensuing step in this process, where a combining function must be used to aggregate results and assign each place a score. Casting the problem in the multiple classifier systems framework, in this paper we compare several candidate combiners with respect to their performance in the visual localization task. For this evaluation, we selected the most popular methods in the class of non-trained combiners, namely the sum rule and product rule. A deeper insight into the potential of these combiners is provided through a discriminativity analysis involving the algebraic rules and two extensions of these methods: the threshold, as well as the weighted modifications. In addition, a voting method, previously used in robot visual localization, is assessed. Furthermore, we address the process of constructing a model of the environment by describing how the model granularity impacts upon performance. All combiners are tested on a visual localization task, carried out on a public dataset. It is experimentally demonstrated that the sum rule extensions globally achieve the best performance, confirming the general agreement on the robustness of this rule in other classification problems. The voting method, whilst competitive with the product rule in its standard form, is shown to be outperformed by its modified versions.
Resumo:
Trabalho apresentado no âmbito do European Master in Computational Logics, como requisito parcial para obtenção do grau de Mestre em Computational Logics
Resumo:
Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.
Resumo:
In the present paper we compare clustering solutions using indices of paired agreement. We propose a new method - IADJUST - to correct indices of paired agreement, excluding agreement by chance. This new method overcomes previous limitations known in the literature as it permits the correction of any index. We illustrate its use in external clustering validation, to measure the accordance between clusters and an a priori known structure. The adjusted indices are intended to provide a realistic measure of clustering performance that excludes agreement by chance with ground truth. We use simulated data sets, under a range of scenarios - considering diverse numbers of clusters, clusters overlaps and balances - to discuss the pertinence and the precision of our proposal. Precision is established based on comparisons with the analytical approach for correction specific indices that can be corrected in this way are used for this purpose. The pertinence of the proposed correction is discussed when making a detailed comparison between the performance of two classical clustering approaches, namely Expectation-Maximization (EM) and K-Means (KM) algorithms. Eight indices of paired agreement are studied and new corrected indices are obtained.
Resumo:
A Salmonella é um microrganismo responsável por grande parte das doenças alimentares, podendo por em causa a saúde pública da área contaminada. Uma deteção rápida, eficiente e altamente sensível e extremamente importante, sendo um campo em franco desenvolvimento e alvo de variados e múltiplos estudos na comunidade cientifica atual. Foi desenvolvido um método potenciométrico para a deteção de Salmonellas, com elétrodos seletivos de iões, construídos em laboratório com pontas de micropipetas, fios de prata e sensores com composição otimizada. O elétrodo indicador escolhido foi um ESI seletivo a cadmio, para redução da probabilidade de interferências no método, devido a pouca abundancia do cadmio em amostras alimentares. Elétrodos seletivos a sódio, elétrodos de Ag/AgCl de simples e de dupla juncão foram também construídos e caracterizados para serem aplicados como elétrodos de referência. Adicionalmente otimizaram-se as condições operacionais para a analise potenciométrica, nomeadamente o elétrodo de referencia utilizado, condicionamento dos elétrodos, efeito do pH e volume da solução amostra. A capacidade de realizar leituras em volumes muito pequenos com limites de deteção na ordem dos micromolares por parte dos ESI de membrana polimérica, foi integrada num ensaio com um formato nao competitivo ELISA tipo sanduiche, utilizando um anticorpo primário ligado a nanopartículas de Fe@Au, permitindo a separação dos complexos anticorpo-antigénio formados dos restantes componentes em cada etapa do ensaio, pela simples aplicação de um campo magnético. O anticorpo secundário foi marcado com nanocristais de CdS, que são bastante estáveis e é fácil a transformação em Cd2+ livre, permitindo a leitura potenciométrica. Foram testadas várias concentrações de peroxido de hidrogénio e o efeito da luz para otimizar a dissolução de CdS. O método desenvolvido permitiu traçar curvas de calibração com soluções de Salmonellas incubadas em PBS (pH 4,4) em que o limite de deteção foi de 1100 CFU/mL e de 20 CFU/mL, utilizando volumes de amostra de 10 ƒÊL e 100 ƒÊL, respetivamente para o intervalo de linearidade de 10 a 108 CFU/mL. O método foi aplicado a uma amostra de leite bovino. A taxa de recuperação media obtida foi de 93,7% } 2,8 (media } desvio padrão), tendo em conta dois ensaios de recuperação efetuados (com duas replicas cada), utilizando um volume de amostra de 100 ƒÊL e concentrações de 100 e 1000 CFU/mL de Salmonella incubada.
Resumo:
Dissertação para obtenção do Grau de Mestre em Matemática e Aplicações Especialização em Actuariado, Estatística e Investigação Operacional
Resumo:
A Nonius Software é uma empresa nacional de engenharia na área de telecomunicações, que se dedica ao desenvolvimento de soluções para a gestão de sistemas informáticos e de entretenimento, tendo como finalidade o mercado mundial hoteleiro e hospitalar. A solução de TV interactiva da Nonius oferece uma experiência única ao hóspede, ao disponibilizar várias opções de entretenimento e acesso a conteúdos de elevada qualidade e interesse. O hóspede tem acesso a canais de TV, aluguer de filmes, Internet, jogos, informações, promoções e compras na TV. O objectivo principal desta dissertação foi implementar alguns serviços de entretenimento numa televisão LG Pro: Centric. Este equipamento tem como principal vantagem o facto de conter a set-top-box inserida dentro da própria televisão. Em termos arquitectónicos, o sistema Nonius TV tem dois elementos fundamentais: o backend, responsável pelo processamento e tratamento da informação centralizada e o frontend instalado nos dispositivos com os quais o hóspede contacta directamente. Uma parte significativa do trabalho desenvolvido centrou-se na implementação de funcionalidades no backend. Foram, no entanto, também desenvolvidas algumas funcionalidades nos serviços de frontend. Para o cumprimento dos objectivos estabelecidos, foi utilizada a tecnologia FLASH, tendo como linguagem de programação a segunda versão do ActionScript. Relativamente ao desenvolvimento de backend são utilizados o PHP e o JavaScript.
Resumo:
A thirty three year-old, male patient was admitted at the Hospital of the São Paulo University School of Medicine, at the city of São Paulo, Brazil, with complaint of pains, tingling and decreased sensibility in the right hand for the last four months. This had progressed to the left hand, left foot and right foot, in addition to a difficulty of flexing and stretching in the left foot. Tests were positive for HBeAg, IgM anti-HBc and HBsAg, thus characterizing the condition of acute hepatitis B. The ALT serum level was 15 times above the upper normal limit. Blood glucose, cerebral spinal fluid, antinuclear antibodies (ANA) and anti-HIV and anti-HCV serum tests were either normal or negative. Electroneuromyography disclosed severe peripheral neuropathy with an axon prevalence and signs of denervation; nerve biopsy disclosed intense vasculitis. The diagnosis of multiple confluent mononeuropathy associated to acute hepatitis B was done. This association is not often reported in international literature and its probable cause is the direct action of the hepatitis B virus on the nerves or a vasculitis of the vasa nervorum brought about by deposits of immune complexes.