992 resultados para MOVEMENT VARIABILITY
Resumo:
This is the Effect of water quality on coarse fish productivity and movement in the Lower River Irwell and Upper Manchester Ship Canal: a watercourse recovering from historical pollution report produced by the Environment Agency in 2003. The aim of this study was to investigate the impact of water quality upon coarse fish population dynamics in a lowland, urban watercourse. All of the research carried was undertaken in the lower River Irwell and upper Manchester Ship Canal, between February 1998 and December 2001. Of particular interest was the natural sustainability of the urban fishery given recent concern raised in the angling community over an apparent decline in coarse fish populations in lowland rivers. The research described in this report has concentrated upon the role of water quality in determining coarse fish population dynamics, and in particular: The impact of water quality upon fish growth and productivity; The impact of poor water quality and low dissolved oxygen concentrations upon fish distribution and movement; The impact of water quality upon the sexual development of fish.
Resumo:
Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).
Resumo:
As extensas pradarias submersas formadas pelas gramas marinhas são importantes habitats da costa, onde ocorrem interações ecológicas entre diversas espécies da vegetação subaquática, invertebrados bentônicos e peixes. As gramas marinhas e algas de deriva são conhecidas como macrófitas marinhas e, por ocuparem o mesmo tipo de substrato, são normalmente encontradas juntas, proporcionando oxigênio, alimento, proteção, abrigo além de sítios de reprodução e pastagem para os animais associados a essas pradarias. Amostras de algas de deriva e de H. wrightii foram coletadas, ao longo de transectos fixos de 50 m paralelos à Ilha do Japonês, a fim de analisar a existência de relações positivas entre as espécies de macrófitas marinhas e sua macrofauna associada, comparar as duas comunidades e avaliar a estruturação da comunidade macrofaunal bêntica do local. Os transectos foram alocados de acordo com a posição do banco de grama marinha. Observou-se que a densidade de eixos e a biomassa de H. wrightii não explicam a variação da biomassa, riqueza de espécies e diversidade (Índice de Simpson) das algas de deriva. A grande movimentação das algas de deriva ao longo do banco de grama marinha faz com que elas se homogeneízem e ocupem diferentes lugares ao acaso na pradaria, muitos desses locais com baixa biomassa de H. wrightii devido à grande variabilidade na distribuição dessa espécie no local de estudo. Os descritores ecológicos da grama marinha também não tiveram relações positivas com sua macrofauna bêntica associada. A comunidade macrofaunal associada às gramas marinhas foi mais densa, rica e diversa do que a comunidade macrofaunal associada às algas de deriva. Os moluscos Anomalocardia flexuosa, Cerithium atratum, Ostrea sp, Tellina lineata e Divalinga quadrissulcata dominaram o ambiente de gramas marinhas. A maior complexidade estrutural das algas de deriva forneceu um habitat protegido mais atrativo para os crustáceos como, Pagurus criniticornis, Cymadusa filosa e Batea catharinensis. A malacofauna associada às algas não foi abundante, mas um novo registro foi a ocorrência do bivalve invasor Lithopaga aristatus, perfurando uma concha de Ostrea sp. As relações entre os descritores da biomassa algal foram comprovadas para a maioria dos descritores de sua fauna associada. As relações das macrófitas marinhas com a macrofauna total associada seguiram o mesmo padrão das relações das algas de deriva. As análises de agrupamento e ordenação mostraram que as comunidades macrofaunais bênticas do local são estruturadas de acordo com os táxons dos organismos associados mais dominantes influenciados pelo tipo de vegetação basibionte (algas de deriva ou grama marinha). Destaca-se com o presente estudo a importância de medidas de maior proteção no local para a preservação e manutenção do ecossistema da Ilha do Japonês, RJ, Brasil