953 resultados para MELATONIN SECRETION
Resumo:
Arsenic is a testicular environmental toxic. Melatonin (Me), being a potent antioxidant, may reduce the damage caused by arsenic in male fertility. The effects of daily oral exposure of Sodium Arsenite (As; 7.0 mg/kg/bw); Melatonin (Me, 10.0 mg/kg/bw); Me (10.0 mg/kg/bw) plus As (7.0 mg/kg/bw), and Negative Control (NaCl 0.9%) in male CF-1 adult mice were assessed in acute (8.3 days), chronic (33.2 days) and recovery (66,4 days) of testicular damage. We evaluated changes in testicular weight and histopathological, morphometric measurements, expression of COX-2 and Androgen Receptor (AR) antigens and lipid peroxidation levels. Treatment resulted in decreased tubular diameter and AR expression, and increased: interstitial area, luminal diameter, COX-2 expression levels and of lipid peroxidation. Co-administration of As and Me partially decreased germ cell degeneration and AR expression levels, improving testicular histopathological parameters. These results indicate that As causes toxicity and testicular germ cell degeneration by induction of oxidative stress. Me partially protects from this damage in mouse testis, acting as scavenger of oxygen radical species.
Resumo:
We evaluated the sperm parameters such as cauda epididymis weight, sperm count, sperm morphology and sperm DNA stability of adult CF-1 male mice treated daily (oral exposure) with the toxic sodium arsenite (As, 7.0 mg/kg/body weight); Melatonin (Me, 10.0 mg/kg/bw), Me (10.0 mg/kg/bw) plus As (7.0 mg/kg/bw) and Negative Control (NaCl 0.9%) to assess acute (8.3 days), chronic (33.2 days) and recovery of testicular damage (66.4 days). Arsenic decreases the number of sperm from chronic treatment (33.2 days) and this effect continued until 66.4 days of treatment. The toxic effect of As also altered the morphology of spermatozoa in all treatment periods when compared to the negative control group. However, Metalonin induced protective effects in periods of 33.2 and 66.4 days of treatment. Additionally, the stability of DNA was significantly affected by arsenic in all periods, but the chronic treatment (33.2 days) in the AsMe revealed increased stability compared to the group treated with arsenic only. Melatonin partially protects sperm toxicity caused by Arsenic, especially during periods of 33.2 and 66.4 days.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although melatonin is mainly produced by the pineal gland, an increasing number of extra-pineal sites of melatonin synthesis have been described. We previously demonstrated the existence of bidirectional communication between the pineal gland and the immune system that drives a switch in melatonin production from the pineal gland to peripheral organs during the mounting of an innate immune response. In the present study, we show that acute neuroinflammation induced by lipopolysaccharide (LPS) injected directly into the lateral ventricles of adult rats reduces the nocturnal peak of melatonin in the plasma and induces its synthesis in the cerebellum, though not in the cortex or hippocampus. This increase in cerebellar melatonin content requires the activation of nuclear factor kappa B (NF-κB), which positively regulates the expression of the key enzyme for melatonin synthesis, arylalkylamine N-acetyltransferase (AA-NAT). Interestingly, LPS treatment led to neuronal death in the hippocampus and cortex, but not in the cerebellum. This privileged protection of cerebellar cells was abrogated when G-protein-coupled melatonin receptors were blocked by the melatonin antagonist luzindole, suggesting that the local production of melatonin protects cerebellar neurons from LPS toxicity. This is the first demonstration of a switch between pineal and extra-pineal melatonin production in the central nervous system following a neuroinflammatory response. These results have direct implications concerning the differential susceptibility of specific brain areas to neuronal death.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background and Objective: Antimicrobial peptides, such as beta-defensins, secreted by gingival epithelial cells, are thought to play a major role in preventing periodontal diseases. In the present study, we investigated the ability of green tea polyphenols to induce human beta-defensin (hBD) secretion in gingival epithelial cells and to protect hBDs from proteolytic degradation by Porphyromonas gingivalis.Material and Methods: Gingival epithelial cells were treated with various amounts (25-200 mu g/mL) of green tea extract or epigallocatechin-3-gallate (EGCG). The secretion of hBD1 and hBD2 was measured using ELISAs, and gene expression was quantified by real-time PCR. The treatments were also carried out in the presence of specific kinase inhibitors to identify the signaling pathways involved in hBD secretion. The ability of green tea extract and EGCG to prevent hBD degradation by proteases of P. gingivalis present in a bacterial culture supernatant was evaluated by ELISA.Results: The secretion of hBD1 and hBD2 was up-regulated, in a dose-dependent manner, following the stimulation of gingival epithelial cells with a green tea extract or EGCG. Expression of the hBD gene in gingival epithelial cells treated with green tea polyphenols was also increased. EGCG-induced secretion of hBD1 and hBD2 appeared to involve extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Lastly, green tea extract and EGCG prevented the degradation of recombinant hBD1 and hBD2 by a culture supernatant of P. gingivalis.Conclusion: Green tea extract and EGCG, through their ability to induce hBD secretion by epithelial cells and to protect hBDs from proteolytic degradation by P. gingivalis, have the potential to strengthen the epithelial antimicrobial barrier. Future clinical studies will indicate whether these polyphenols represent a valuable therapeutic agent for treating/preventing periodontal diseases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to assess antioxidant effects of melatonintreatment compared to N-acetylcysteine (NAC) and to their combination in asickle cell suspension. Sickle erythrocytes were suspended in phosphate-buffered saline, pH 7.4, composing external control group. They were alsosuspended and incubated at 37°C either in the absence (experimental controlgroup) or in the presence of NAC, melatonin and their combination atconcentrations of 100 pM, 100 nM and 100 lM for 1 hr (treatment groups).The melatonin influences were evaluated by spectrophotometric [hemolysisdegree, catalase (CAT), glutathione S-transferase (GST), glutathioneperoxidase (GPx), glutathione reductase (GR), glucose-6-phosphatedehydrogenase (G6PDH), and superoxide dismutase (SOD) activities] andchromatographic methods [glutathione (GSH) and malondialdehyde (MDA)levels]. Incubation period was able to cause a rise about 64% on hemolysisdegree as well as practically doubled the lipid peroxidation levels (P < 0.01).However, almost all antioxidants tested treatments neutralized this incubationeffect observed in MDA levels. Among the antioxidant biomarkers evaluated,we observed a modulating effect of combined treatment on GPx and SODactivities (P < 0.01), which showed ~25% decrease in their activities. Inaddition, we found an antioxidant dose-dependent effect for melatonin onlipid peroxidation (r = 0.29; P = 0.03) and for combined antioxidanttreatments also on MDA levels (r = 0.37; P = 0.01) and on SOD activity(r = 0.54; P < 0.01). Hence, these findings contribute with important insightthat melatonin individually or in combination with NAC may be useful forsickle cell anemia management.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)