917 resultados para MECHANISTIC PATHWAY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous work in yeast has suggested that modification of tRNAs, in particular uridine bases in the anticodon wobble position (U34), is linked to TOR (target of rapamycin) signaling. Hence, U34 modification mutants were found to be hypersensitive to TOR inhibition by rapamycin. To study whether this involves inappropriate TOR signaling, we examined interaction between mutations in TOR pathway genes (tip41Δ, sap190Δ, ppm1Δ, rrd1Δ) and U34 modification defects (elp3Δ, kti12Δ, urm1Δ, ncs2Δ) and found the rapamycin hypersensitivity in the latter is epistatic to drug resistance of the former. Epistasis, however, is abolished in tandem with a gln3Δ deletion, which inactivates transcription factor Gln3 required for TOR-sensitive activation of NCR (nitrogen catabolite repression) genes. In line with nuclear import of Gln3 being under control of TOR and dephosphorylation by the Sit4 phosphatase, we identify novel TOR-sensitive sit4 mutations that confer rapamycin resistance and importantly, mislocalise Gln3 when TOR is inhibited. This is similar to gln3Δ cells, which abolish the rapamycin hypersensitivity of U34 modification mutants, and suggests TOR deregulation due to tRNA undermodification operates through Gln3. In line with this, loss of U34 modifications (elp3Δ, urm1Δ) enhances nuclear import of and NCR gene activation (MEP2, GAP1) by Gln3 when TOR activity is low. Strikingly, this stimulatory effect onto Gln3 is suppressed by overexpression of tRNAs that usually carry the U34 modifications. Collectively, our data suggest that proper TOR signaling requires intact tRNA modifications and that loss of U34 modifications impinges on the TORsensitive NCR branch via Gln3 misregulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclic GMP-dependent protein kinase (PKG) is a key transducer in the NO-cGMP signaling pathway. In this line, PKG has been considered an important drug target for treating hypertensive cardiovascular and pulmonary diseases. However, the investigation of PKG’s allosteric activation mechanism has been hampered by a lack of structural information. One of the fundamental questions on the cGMP-dependent activation of PKG is how the enzyme can distinguish cGMP over cAMP and selectively respond to cGMP. To ensure proper signaling, PKG must have developed unique features to ensure its activation upon the right activation signal. In this thesis, the cGMP-selective activation mechanism of PKG was studied through determining crystal structures of three truncated constructs of the regulatory domain [CNB-A (92-227), CNB-B (271-369), and CNB-A/B (92-351)] of PKG Iβ in the absence or presence of cyclic nucleotides. Herein, two individual CNB domain structures with biochemical data revealed that the C-terminal CNB domain (CNB-B) is responsible for cGMP selectivity, while the N-terminal CNB-domain (CNB-A) has a higher binding affinity for both cGMP and cAMP without showing any selectivity. Based on these crystal structures, mutagenesis studies were performed in which the critical residues for cyclic nucleotide selectivity and activation were identified. Furthermore, we discovered that the conformational changes of the C-terminal helix of the CNB-B that bridges between the regulatory and catalytic domains including the hydrophobic capping interaction are crucial for PKG activation. In addition, to observe the global conformation of the activated R-domain, I solved a co-crystal structure of the CNB-A/B with cGMP. Although a monomeric construct was crystallized, the structure displays a dimer. Strikingly, the CNB-A domain and its bound cGMP provide a key interface for this dimeric interaction. Using small angle X-ray scattering (SAXS), the existence of the cGMP-mediated dimeric interface within the CNB domains was confirmed. Furthermore, measuring cGMP-binding affinities (EC50) of the dimeric interface mutants as well as determining activation constants (Ka) revealed that the interface formation is important for PKG activation. To conclude, this thesis study provides a new mechanistic insight in PKG activation along with a newly found interface that can be targeted for designing PKG-specific activity modulators.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The signaling pathway of phosphatidylinositol 3-kinase (PI3K) is critical in many aspects of growth and cell survival. The path of PI3K is stimulated physiologically as a result of many growth factors and regulatory factors. Several genetic alterations such as amplification, mutation and chromosomal arrangements may compromise the PI3K pathway, generating permanent activation in different cancer types have found evidence of these deleterious genetic modifications. Abnormal activation of the PI3K pathway results in alteration of the control mechanisms of growth and cell survival, which favors the competitive growth, and frequently metastatic capacity, greater resistance to treatment. The aim of this paper is to review matters relating to the operation of the PI3K/Akt signaling pathway and its role in the process of carcinogenesis in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En aquesta tesi s'ha caracteritzat la ruta d'internalització de l'onconasa, una RNasa citotòxica. Els resultats indiquen que l'onconasa entra a les cèl·lules per la via dependent de clatrina i del complex AP-2. Seguidament es dirigeix als endosomes de reciclatge i es a través d'aquesta ruta que la proteïna exerceix la citotoxicitat. Per altra banda, els resultats d'aquest treball demostren que PE5, una variant citotòxica de la ribonucleasa pancreàtica humana (HP-RNasa), interacciona amb la importina  mitjançant diferents residus que tot i que no són seqüencials, es troben propers en l'estructura tridimensional d'aquesta proteïna. PM8 és una HP-RNasa amb estructura cristal·logràfica dimèrica constituïda per intercanvi de dominis N-terminals. En aquesta tesi s'han establert les condicions per estabilitzar aquest dimer en solució i també es proposa un mecanisme per la dimerització.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymes are high-weight molecules which catalyze most of the metabolic processes in living organisms. Very often, these proteins contain one or more 1st row transition metal ions in their active center (Fe, Cu, Co, Mn, Zn, etc.), and are known as metalloenzymes or metalloproteins. Among these, metalloenzymes that activate molecular oxygen and use it as terminal oxidant stand out because of the wide range of catalyzed reactions and their exquisite selectivity. In this PhD dissertation we develop low-weight synthetic bioinspired complexes that can mimic structural and/or functional features of the active center of oxigenases. In the first part, we describe the use of unsymmetric dinuclear Cu complexes which are capable of performing the oxidation of phenols and phenolates in a analogous manner of the tyrosinase protein. In the second part, we describe the use of mononuclear manganese complexes in the oxidation of alcanes and alquenes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we pledge that physically based equations should be combined with remote sensing techniques to enable a more theoretically rigorous estimation of area-average soil heat flux, G. A standard physical equation (i.e. the analytical or exact method) for the estimation of G, in combination with a simple, but theoretically derived, equation for soil thermal inertia (F), provides the basis for a more transparent and readily interpretable method for the estimation of G; without the requirement for in situ instrumentation. Moreover, such an approach ensures a more universally applicable method than those derived from purely empirical studies (employing vegetation indices and albedo, for example). Hence, a new equation for the estimation of Gamma(for homogeneous soils) is discussed in this paper which only requires knowledge of soil type, which is readily obtainable from extant soil databases and surveys, in combination with a coarse estimate of moisture status. This approach can be used to obtain area-averaged estimates of Gamma(and thus G, as explained in paper II) which is important for large-scale energy balance studies that employ aircraft or satellite data. Furthermore, this method also relaxes the instrumental demand for studies at the plot and field scale (no requirement for in situ soil temperature sensors, soil heat flux plates and/or thermal conductivity sensors). In addition, this equation can be incorporated in soil-vegetation-atmosphere-transfer models that use the force restore method to update surface temperatures (such as the well-known ISBA model), to replace the thermal inertia coefficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For vegetated surfaces, calculation of soil heat flux, G, with the Exact or Analytical method requires a harmonic analysis of below-canopy soil surface temperature, to obtain the shape of the diurnal course of G. When determining G with remote sensing methods, only composite (vegetation plus soil) radiometric brightness temperature is available. This paper presents a simple equation that relates the sum of the harmonic terms derived for the composite radiometric surface temperature to that of belowcanopy soil surface temperature. The thermal inertia, Gamma(,) for which a simple equation has been presented in a companion paper, paper I, is used to set the magnitude of G. To assess the success of the method proposed in this paper for the estimation of the diurnal shape of G, a comparison was made between 'remote' and in situ calculated values from described field sites. This indicated that the proposed method was suitable for the estimation of the shape of G for a variety of vegetation types and densities. The approach outlined in paper I, to obtain Gamma, was then combined with the estimated harmonic terms to predict estimates of G, which were compared to values predicted by empirical remote methods found in the literature. This indicated that the method proposed in the combination of papers I and II gave reliable estimates of G, which, in comparison to the other methods, resulted in more realistic predictions for vegetated surfaces. This set of equations can also be used for bare and sparsely vegetated soils, making it a universally applicable method. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrous oxide (N2O) emission from soils is a major contributor to the atmospheric loading of this potent greenhouse gas. It is thought that autotrophic ammonia oxidizing bacteria (AOB) are a significant source of soil-derived N2O and a denitrification pathway (i.e. reduction of NO2- to NO and N2O), so-called nitrifier denitrification, has been demonstrated as a N2O production mechanism in Nitrosomonas europaea. It is thought that Nitrosospira spp. are the dominant AOB in soil, but little information is available on their ability to produce N2O or on the existence of a nitrifier denitrification pathway in this lineage. This study aims to characterize N2O production and nitrifier denitrification in seven strains of AOB representative of clusters 0, 2 and 3 in the cultured Nitrosospira lineage. Nitrosomonas europaea ATCC 19718 and ATCC 25978 were analysed for comparison. The aerobically incubated test strains produced significant (P < 0.001) amounts of N2O and total N2O production rates ranged from 2.0 amol cell(-1) h(-1), in Nitrosospira tenuis strain NV12, to 58.0 amol cell(-1) h(-1), in N. europaea ATCC 19718. Nitrosomonas europaea ATCC 19718 was atypical in that it produced four times more N2O than the next highest producing strain. All AOB tested were able to carry out nitrifier denitrification under aerobic conditions, as determined by production of N-15-N2O from applied N-15-NO2-. Up to 13.5% of the N2O produced was derived from the exogenously applied N-15-NO2-. The results suggest that nitrifier denitrification could be a universal trait in the betaproteobacterial AOB and its potential ecological significance is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pattern-recognition receptors (PRRs) detect molecular signatures of microbes and initiate immune responses to infection. Prototypical PRRs such as Toll-like receptors (TLRs) signal via a conserved pathway to induce innate response genes. In contrast, the signaling pathways engaged by other classes of putative PRRs remain ill defined. Here, we demonstrate that the β-glucan receptor Dectin-1, a yeast binding C type lectin known to synergize with TLR2 to induce TNFα and IL-12, can also promote synthesis of IL-2 and IL-10 through phosphorylation of the membrane proximal tyrosine in the cytoplasmic domain and recruitment of Syk kinase. syk−/− dendritic cells (DCs) do not make IL-10 or IL-2 upon yeast stimulation but produce IL-12, indicating that the Dectin-1/Syk and Dectin-1/TLR2 pathways can operate independently. These results identify a novel signaling pathway involved in pattern recognition by C type lectins and suggest a potential role for Syk kinase in regulation of innate immunity.