573 resultados para MASK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent work has revealed multiple pathways for cross-orientation suppression in cat and human vision. In particular, ipsiocular and interocular pathways appear to assert their influence before binocular summation in human but have different (1) spatial tuning, (2) temporal dependencies, and (3) adaptation after-effects. Here we use mask components that fall outside the excitatory passband of the detecting mechanism to investigate the rules for pooling multiple mask components within these pathways. We measured psychophysical contrast masking functions for vertical 1 cycle/deg sine-wave gratings in the presence of left or right oblique (645 deg) 3 cycles/deg mask gratings with contrast C%, or a plaid made from their sum, where each component (i) had contrast 0.5Ci%. Masks and targets were presented to two eyes (binocular), one eye (monoptic), or different eyes (dichoptic). Binocular-masking functions superimposed when plotted against C, but in the monoptic and dichoptic conditions, the grating produced slightly more suppression than the plaid when Ci $ 16%. We tested contrast gain control models involving two types of contrast combination on the denominator: (1) spatial pooling of the mask after a local nonlinearity (to calculate either root mean square contrast or energy) and (2) "linear suppression" (Holmes & Meese, 2004, Journal of Vision 4, 1080–1089), involving the linear sum of the mask component contrasts. Monoptic and dichoptic masking were typically better fit by the spatial pooling models, but binocular masking was not: it demanded strict linear summation of the Michelson contrast across mask orientation. Another scheme, in which suppressive pooling followed compressive contrast responses to the mask components (e.g., oriented cortical cells), was ruled out by all of our data. We conclude that the different processes that underlie monoptic and dichoptic masking use the same type of contrast pooling within their respective suppressive fields, but the effects do not sum to predict the binocular case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In psychophysics, cross-orientation suppression (XOS) and cross-orientation facilitation (XOF) have been measured by investigating mask configuration on the detection threshold of a centrally placed patch of sine-wave grating. Much of the evidence for XOS and XOF comes from studies using low and high spatial frequencies, respectively, where the interactions are thought to arise from within (XOS) and outside (XOF) the footprint of the classical receptive field. We address the relation between these processes here by measuring the effects of various sizes of superimposed and annular cross-oriented masks on detection thresholds at two spatial scales (1 and 7 c/deg) and on contrast increment thresholds at 7 c/deg. A functional model of our results indicates the following (1) XOS and XOF both occur for superimposed and annular masks. (2) XOS declines with spatial frequency but XOF does not. (3) The spatial extent of the interactions does not scale with spatial frequency, meaning that surround-effects are seen primarily at high spatial frequencies. (4) There are two distinct processes involved in XOS: direct divisive suppression and modulation of self-suppression. (5) Whether XOS or XOF wins out depends upon their relative weights and mask contrast. These results prompt enquiry into the effect of spatial frequency at the single-cell level and place new constraints on image-processing models of early visual processing. © ARVO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To explore spatial interactions between visual mechanisms in the Fourier domain we measured detection thresholds for vertical and horizontal sine-wave gratings (4.4 deg diameter) over a range of spatial frequencies (0.5-23 c/deg) in the presence of grating and plaid masks with component contrasts of 8%, orientations of ±45° and a spatial frequency of 1 c/deg. The mask suppressed the target grating over a range of ±1 octave, and the plaid produced more suppression than the grating, consistent with summation of mask components in a broadly tuned contrast gain pool. At greater differences in spatial frequency (∼3 octaves), the plaid and grating masks both produced about 3 dB of facilitation (they reduced detection thresholds by a factor of about √2). At yet further distances (∼4 octaves) the masks had no effect. The facilitation cannot be attributed to a reduction of uncertainty by the mask because (a) it occurs for mask components that have very different spatial frequencies and orientations from the test and (b) the large stimulus size and central fixation point mean there was no spatial uncertainty that could be reduced. We suggest the results are due to long-range sensory interactions (in the Fourier domain) between mask and test-channels. The effects could be due to either direct facilitation or disinhibition. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A well-known property of orientation-tuned neurons in the visual cortex is that they are suppressed by the superposition of an orthogonal mask. This phenomenon has been explained in terms of physiological constraints (synaptic depression), engineering solutions for components with poor dynamic range (contrast normalization) and fundamental coding strategies for natural images (redundancy reduction). A common but often tacit assumption is that the suppressive process is equally potent at different spatial and temporal scales of analysis. To determine whether it is so, we measured psychophysical cross-orientation masking (XOM) functions for flickering horizontal Gabor stimuli over wide ranges of spatio-temporal frequency and contrast. We found that orthogonal masks raised contrast detection thresholds substantially at low spatial frequencies and high temporal frequencies (high speeds), and that small and unexpected levels of facilitation were evident elsewhere. The data were well fit by a functional model of contrast gain control, where (i) the weight of suppression increased with the ratio of temporal to spatial frequency and (ii) the weight of facilitatory modulation was the same for all conditions, but outcompeted by suppression at higher contrasts. These results (i) provide new constraints for models of primary visual cortex, (ii) associate XOM and facilitation with the transient magno- and sustained parvostreams, respectively, and (iii) reconcile earlier conflicting psychophysical reports on XOM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new form of contrast masking in which the target is a patch of low spatial frequency grating (0.46 c/deg) and the mask is a dark thin ring that surrounds the centre of the target patch. In matching and detection experiments we found little or no effect for binocular presentation of mask and test stimuli. But when mask and test were presented briefly (33 or 200 ms) to different eyes (dichoptic presentation), masking was substantial. In a 'half-binocular' condition the test stimulus was presented to one eye, but the mask stimulus was presented to both eyes with zero-disparity. This produced masking effects intermediate to those found in dichoptic and full-binocular conditions. We suggest that interocular feature matching can attenuate the potency of interocular suppression, but unlike in previous work (McKee, S. P., Bravo, M. J., Taylor, D. G., & Legge, G. E. (1994) Stereo matching precedes dichoptic masking. Vision Research, 34, 1047) we do not invoke a special role for depth perception. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In human vision, the response to luminance contrast at each small region in the image is controlled by a more global process where suppressive signals are pooled over spatial frequency and orientation bands. But what rules govern summation among stimulus components within the suppressive pool? We addressed this question by extending a pedestal plus pattern mask paradigm to use a stimulus with up to three mask components: a vertical 1 c/deg pedestal, plus pattern masks made from either a grating (orientation = -45°) or a plaid (orientation = ±45°), with component spatial frequency of 3 c/deg. The overall contrast of both types of pattern mask was fixed at 20% (i.e., plaid component contrasts were 10%). We found that both of these masks transformed conventional dipper functions (threshold vs. pedestal contrast with no pattern mask) in exactly the same way: The dipper region was raised and shifted to the right, but the dipper handles superimposed. This equivalence of the two pattern masks indicates that contrast summation between the plaid components was perfectly linear prior to the masking stage. Furthermore, the pattern masks did not drive the detecting mechanism above its detection threshold because they did not abolish facilitation by the pedestal (Foley, 1994). Therefore, the pattern masking could not be attributed to within-channel masking, suggesting that linear summation of contrast signals takes place within a suppressive contrast gain pool. We present a quantitative model of the effects and discuss the implications for neurophysiological models of the process. © 2004 ARVO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Masking is said to occur when a mask stimulus interferes with the visibility of a target (test) stimulus. One widely held view of this process supposes interactions between mask and test mechanisms (cross-channel masking), and explicit models (e.g., J. M. Foley, 1994) have proposed that the interactions are inhibitory. Unlike a within-channel model, where masking involves the combination of mask and test stimulus within a single mechanism, this cross-channel inhibitory model predicts that the mask should attenuate the perceived contrast of a test stimulus. Another possibility is that masking is due to an increase in noise, in which case, perception of contrast should be unaffected once the signal exceeds detection threshold. We use circular patches and annuli of sine-wave grating in contrast detection and contrast matching experiments to test these hypotheses and investigate interactions across spatial frequency, orientation, field position, and eye of origin. In both types of experiments we found substantial effects of masking that can occur over a factor of 3 in spatial frequency, 45° in orientation, across different field positions and between different eyes. We found the effects to be greatest at the lowest test spatial frequency we used (0.46 c/deg), and when the mask and test differed in all four dimensions simultaneously. This is surprising in light of previous work where it was concluded that suppression from the surround was strictly monocular (C. Chubb, G. Sperling, & J. A. Solomon, 1989). The results confirm that above detection threshold, cross-channel masking involves contrast suppression and not (purely) mask-induced noise. We conclude that cross-channel masking can be a powerful phenomenon, particularly at low test spatial frequencies and when mask and test are presented to different eyes. © 2004 ARVO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At detection threshold, sensitivity improves as the area of a test grating increases, but not when the test is placed on a pedestal and the task becomes contrast discrimination (G. E. Legge, & J. M. Foley, 1980). This study asks whether the abolition of area summation is specific to the situation where mask and test stimuli have the same spatial frequency and orientation ("within-channel" masking) or is more general, also occurring when mask and test stimuli are very different ("cross-channel" masking). Threshold versus contrast masking functions were measured where the test and mask were either both small (SS), both large (LL), or small and large, respectively (SL). For within-channel masking, facilitation and area summation were found at low mask contrasts, but the results for SS and LL converged at intermediate contrasts and above, replicating Legge and Foley (1980). For all three observers, less facilitation was found for SL than for SS. For cross-channel masking, area summation occurred across the entire masking function and results for SS and SL were identical. The results for the entire data set were well fit by an extended version of a contrast masking model (J. M. Foley, 1994) in which the weights of excitatory and suppressive surround terms were free parameters. I conclude that (i) there is no empirical abolition of area summation for cross-channel masking, (ii) within-channel area summation can be abolished empirically without being disabled in the model, (iii) observers are able to restrict the area of spatial integration, but not suppression, (iv) extending a cross-channel mask to the surround has no effect on contrast detection, and (v) there is a formal similarity between area summation and contrast adaptation. © 2004 ARVO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foley [J. Opt. Soc. Am. A 11 (1994) 1710] has proposed an influential psychophysical model of masking in which mask components in a contrast gain pool are raised to an exponent before summation and divisive inhibition. We tested this summation rule in experiments in which contrast detection thresholds were measured for a vertical 1 c/deg (or 2 c/deg) sine-wave component in the presence of a 3 c/deg (or 6 c/deg) mask that had either a single component oriented at -45° or a pair of components oriented at ±45°. Contrary to the predictions of Foley's model 3, we found that for masks of moderate contrast and above, threshold elevation was predicted by linear summation of the mask components in the inhibitory stage of the contrast gain pool. We built this feature into two new models, referred to as the early adaptation model and the hybrid model. In the early adaptation model, contrast adaptation controls a threshold-like nonlinearity on the output of otherwise linear pathways that provide the excitatory and inhibitory inputs to a gain control stage. The hybrid model involves nonlinear and nonadaptable routes to excitatory and inhibitory stages as well as an adaptable linear route. With only six free parameters, both models provide excellent fits to the masking and adaptation data of Foley and Chen [Vision Res. 37 (1997) 2779] but unlike Foley and Chen's model, are able to do so with only one adaptation parameter. However, only the hybrid model is able to capture the features of Foley's (1994) pedestal plus orthogonal fixed mask data. We conclude that (1) linear summation of inhibitory components is a feature of contrast masking, and (2) that the main aftereffect of spatial adaptation on contrast increment thresholds can be assigned to a single site. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the potential sensing applications of fibre Bragg gratings in polymer optical fibres. Fibre Bragg gratings are fabricated in different kinds of polymer optical fibres, including Poly methyl methacrylate (PMMA) and TOPAS cyclic olefin copolymer based microstructured polymer optical fibres and PMMA based step-index photosensitive polymer optical fibre, using the 325nm continuous wave ultraviolet laser and phase mask technique. The thermal response of fabricated microstructured polymer optical fibre Bragg gratings has been characterized. The PMMA based single mode microstructured polymer optical fibre Bragg gratings exhibit negative non-linear Bragg wavelength shift with temperature, including a quasi-linear region. The thermal sensitivity of such Bragg gratings in the linear region is up to -97pm/°C. A permanent shift in the grating wavelength at room temperature is observed when such gratings are heated above a threshold temperature which can be extended by annealing the fibre before grating inscription. The largest positive Bragg wavelength shift with temperature in transmission is observed in TOPAS based few moded microstructured polymer optical fibre Bragg gratings and the measured temperature sensitivity is 250±0.5pm/°C. Gluing method is developed to maintain stable optical coupling between PMMA based single mode step index polymer optical fibre Bragg gratings and single mode step index silica optical fibre. Being benefit from this success, polymer optical fibre Bragg gratings are able to be characterised for their temperature, humidity and strain sensitivity, which are -48.2±1pm/°C, 38.3±0.5pm per %RH and 1.33±0.04 pm/µ??respectively. These sensitivities have been utilised to achieve several applications. The strain sensitivity of step index polymer optical fibre Bragg grating devices has been exploited in the potential application of the strain condition monitoring of heavy textiles and when being attached to textile specimens with certain type of adhesives. These polymer fibre Bragg grating devices show better strain transfer and lower structure reinforcement than silica optical fibre Bragg grating devices. The humidity sensitivity of step index polymer optical fibre Bragg grating devices is applied to detecting water in jet fuel and is proved to be able to measure water content of less than 20 ppm in Jet fuel. A simultaneous temperature and humidity sensor is also made by attaching a polymer fibre Bragg grating to a silica optical fibre Bragg grating and it shows better humidity measurement accuracy than that of electronic competitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The direction of synaptic plasticity at the connection between parallel fibres (PFs) and Purkinje cells can be modified by PF stimulation alone. Strong activation (Hartell, 1996) or high frequency stimulation (Schreurs and Alkon, 1993) of PFs induced a long-term depression (LTD) of PF-mediated excitatory postsynaptic currents. Brief raised frequency molecular layer stimulation produced a cAMP-dependent long-temi potentiation (LTP) of field potential (FP) responses (Salin et al., 1998). Thin slices of cerebellar vermis were prepared from 14-21 day old male Wistar rats decapitated under Halothane anaesthesia. FP's were recorded from the Purkinje cell layer in response to alternate 0.2Hz activation of stimulating electrodes placed in the molecular layer. In the presence of picrotoxin, FPs displayed two tetrodotoxin-sensitive, negative-going components termed N1 and N2. EPs were graded responses with paired pulse facilitation and were selectively blocked by 101AM 6-cyano-7-nitroquinoxaline-2,3-dicne (CNQX) an antagonist at iy,-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-type ionotropic glutamate receptors (AMPAR) suggesting that they were primarily PE-mediated. The effects of raised stimulus intensity (RS) and/or increased frequency (IF) activation of the molecular layer on FP responses were examined. In sagittai and transverse slices combined RS and IF molecular layer activation induced a LTD of the N2 component of FP responses. RSIF stimulation produced fewer incidences of LTD in sagittal slices when an inhibitor of nitric oxide synthase (NOS), guanylate cyclase (GC), protein kinase G (PKG) or the GABAB receptor antagonist CGP62349 was included into the perfusion medium. Application of a nitric oxide (NO) donor, a cyclic guanosine monophosphate (cGMP) analogue or a phosphodiesterase (PDE) type V inhibitor to prevent cGMP breakdown paired with IF stimulation produced an acute depression, Raised frequency (RF) molecular layer stimulation produced a slowly emerging LTD of N2 in sagittal slices that was largely blocked in the presence of NOS, cGMP or PKG inhibitors. In transverse slices RE stimulation produced a LTP of the N2 component that was prevented by an inhibitor of protein kinase A or NOS. Inhibition of cGMP-signalling frequently revealed an underlying potentiation suggesting that cGMP activity might mask the effects of cAMP. In sagittal slices RE stimulation resulted in a potentiation of FPs when the cAMP-specific PDE type IV inhibitor rolipram was incorporated into the perfusion medium. In summary, raised levels of PE stimulation can alter the synaptic efficacy at PF-Purkinje cell synapses. The results provide support for a role of NO/cGMP/PKG signalling in the induction of LTD in the cerebellar cortex and suggest that activation of GABAa receptors might also be important. The level of cyclic nucleotide-specific PDE activities may be crucial in determining the level of cGMP and CAMP activity and hence the direction of synaptic plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, I describe studies on fabrication, spectral characteristics and applications of tilted fibre gratings (TFGs) with small, large and 45° tilted structures and novel developments in fabrication of fibre Bragg gratings (FBGs) and long period gratings (LPGs) in normal silica and mid-infrared (mid-IR) glass fibres using near-IR femtosecond laser. One of the major contributions presented in this thesis is the systematic investigation of structures, inscription methods and spectral, polarisation dependent loss (PDL) and thermal characteristics of TFGs with small (<45°), large (>45°) and 45° tilted structures. I have experimentally characterised TFGs, obtaining relationships between the radiation angle, central wavelength of the radiation profile, Bragg resonance and the tilt angle, which are consistent with theoretical simulation based on the mode-coupling theory. Furthermore, thermal responses have been measured for these three types of TFGs, showing the transmission spectra of large and 45° TFGs are insensitive to the temperature change, unlike the normal and small angle tilted FBGs. Based on the distinctive optical properties, TFGs have been developed into interrogation system and sensors, which form the other significant contributions of the work presented in this thesis. The 10°-TFG based 800nm WDM interrogation system can function not just as an in-fibre spectrum analyser but also possess refractive index sensing capability. By utilising the unique polarisation properties, the 81 °-TFG based sensors are capable of sensing the transverse loading and twisting with sensitivities of 2.04pW/(kg/m) and 145.90pW/rad, repectively. The final but the most important contribution from the research work presented in this thesis is the development of novel grating inscription techniques using near-IR femtosecond laser. A number of LPGs and FBGs were successfully fabricated in normal silica and mid-IR glass fibres using point-by-point and phase-mask techniques. LPGs and 1st and 2nd order FBGs have been fabricated in these mid-IR glass fibres showing resonances covering the wavelength range from 1200 to 1700nm with the strengths up to 13dB. In addition, the thermal and strain sensitivities of these gratings have been systematically investigated. All the results from these initial but systematic works will provide useful function characteristics information for future fibre grating based devices and applications in mid-IR range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The antitumour imidazotetrazinones are believed to act as prodrugs for the triazene series of alkylating agents, showing a marked pteference for the alkylation of the middle guanine residue in a run of three or more contiguous guanines. However, the. exact nature of the interactions of imidazotetrazinones within the micro~environment of DNA are; as yet unknown. In order to examine such interactions a three pronged approach involving molecular modelling, synthetic chemistry and biological analysis has been undertaken during the course of this project. . Molecular modelling studies have shown that for the 8-carboxamido substituted imidazotetrazinones antitumour activity is dependent upon the. presence of a free NH group which can be involved in the formation of both intramolecular and intermolecular hydrogen bonds, and the presence of a non-bulky substituent with a small negative potential . volume. Modelling studies involving the docking of .mitozolomide into the major groove of DNA in the region of a triguanine sequence has shown that a number of hydrogen bonding interactions are feasible. A series of 8-substituted carboxamide derivatives of mitozolomide have been synthesised via the 8-acid chloride and 8-carboxylic acid derivatives including a number of peptide analogues. The peptide derivatives were based upon the key structural features of the helix-turn-helix motif of DNA-binding proteins with a view to developing agents that are capable of binding to DNA with greater selectivity. An examination of the importance of intramolecular hydrogen bonding in influencing the antitumour activity:of :the imidazotetrazinones has led to the synthesis of the novel pyrimido[4',5' :4,3]pyrazolo[5,1-d]-1,2,3,5-tetrazine ring system. In general, in vitro cytotoxicity assays showed that the new derivatives were less active against the TLX5 lymphoma cell line. than the parent compound mitozolomide despite an increased potential for hydrogen bonding interactions. Due to the high reactivity of the: tetrazinone ring system it is difficult to study the interactions between the imidazotetrazinones and DNA. Consequently a number of structural analogues that are stable under physiological conditions have been. prepared based upon the 1,2,3 triazin-4(3H)-one ring system fused with both benzene and pyrazole rings. Although the 3-methylbenzotriazinones failed to antagonise the cytotoxic activity of temozolomide encouraging results with a 3-methylpyrazolotriazinone may suggest the existence of an imidazotetrazinone receptor site within DNA. The potential of guanine rich sequences to promote the alkylating selectivity of imidazotetrazinones by acting as a catalyst for ring cleavage and thereby generation of the alkylating agent was examined. Experiments involving the monitoring: of the rate of breakdown of mitozolomide incubated in the presence of synthetic oIigonucleotides did not reveal any catalytic effect resulting from the DNA. However, it was noted that the breakdown of mitozolomide was dependent upon the type of buffer used in the incubations and this may indeed mask any catalysis by the oligonucleotides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automated perimetry has made viable a rapid threshold examination of the visual field and has reinforced the role of perimetry in the diagnostic procedure. The aim of this study was twofold: to isolate the influence of certain extraneous factors on the sensitivity gradient, since these might limit the early detection and accurate monitoring of visual field loss and to investigate the efficacy of certain novel combinations of stimulus parameters in the detection of early visual field loss. The work was carried out with particular reference to glaucoma and to ocular hypertension. The effects of media opacities on the visual field were assessed by forward intraocular light scatter (n= 15) and were found to mask diffuse glaucomatous visual field loss and underestimate focal loss. Correction of the visual field indices for the effects of forward intraocular light scatter (n= 26) showed the focal losses to be, in reality, unaffected. Measurements of back scatter underestimated forward intraocular light scatter (n= 60) and the resultant depression of the visual field. Perimetric sensitivity improved with patient learning (n= 25) and exhibited eccentricity- and depth-dependency effects whereby improvements in sensitivity were greatest for peripheral areas of the field and for those areas which initially demonstrated the lowest sensitivity. The effects of practice were retained over several months (n= 16). Perimetric sensitivity decreased during prolonged examination due to fatigue effects (n&61 19); these demonstrated a similar eccentricity-dependency, being greatest for eccentricities beyond 30o. Mean sensitivities over the range of adaptation levels employed obeyed the Weber-Fechner law (n= 10) and, as would be expected, were independent of pupil size. No relationship was found between short-term fluctuation and adaptation level. Detection of diffuse glaucomatous visual field loss was facilitated using a size III stimulus of duration 200msec at an adaptation level of 31.5asb, compared with a size III stimulus of duration 100msec at an adaptation level of 4asb (n= 20). In a pilot study (n= 10), temporal summation was found to be higher in glaucomatous patients compared with age-matched controls, although the difference was not statistically significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A distinct feature of several recent models of contrast masking is that detecting mechanisms are divisively inhibited by a broadly tuned ‘gain pool’ of narrow-band spatial pattern mechanisms. The contrast gain control provided by this ‘cross-channel’ architecture achieves contrast normalisation of early pattern mechanisms, which is important for keeping them within the non-saturating part of their biological operating characteristic. These models superseded earlier ‘within-channel’ models, which had supposed that masking arose from direct stimulation of the detecting mechanism by the mask. To reveal the extent of masking, I measured the levels produced with large ranges of pattern spatial relationships that have not been explored before. Substantial interactions between channels tuned to different orientations and spatial frequencies were found. Differences in the masking levels produced with single and multiple component mask patterns provided insights into the summation rules within the gain pool. A widely used cross-channel masking model was tested on these data and was found to perform poorly. The model was developed and a version in which linear summation was allowed between all components within the gain pool but with the exception of the self-suppressing route typically provided the best account of the data. Subsequently, an adaptation paradigm was used to probe the processes underlying pooled responses in masking. This delivered less insight into the pooling than the other studies and areas were identified that require investigation for a new unifying model of masking and adaptation. In further experiments, levels of cross-channel masking were found to be greatly influenced by the spatio-temporal tuning of the channels involved. Old masking experiments and ideas relying on within-channel models were re-elevated in terms of contemporary cross-channel models (e.g. estimations of channel bandwidths from orientation masking functions) and this led to different conclusions than those originally arrived at. The investigation of effects with spatio-temporally superimposed patterns is focussed upon throughout this work, though it is shown how these enquiries might be extended to investigate effects across spatial and temporal position.