947 resultados para MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1
Resumo:
Although metabolic syndrome (MS) and systemic lupus erythematosus (SLE) are often associated, a common link has not been identified. Using the BWF1 mouse, which develops MS and SLE, we sought a molecular connection to explain the prevalence of these two diseases in the same individuals. We determined SLE- markers (plasma anti-ds-DNA antibodies, splenic regulatory T cells (Tregs) and cytokines, proteinuria and renal histology) and MS-markers (plasma glucose, non-esterified fatty acids, triglycerides, insulin and leptin, liver triglycerides, visceral adipose tissue, liver and adipose tissue expression of 86 insulin signaling-related genes) in 8-, 16-, 24-, and 36-week old BWF1 and control New-Zealand-White female mice. Up to week 16, BWF1 mice showed MS-markers (hyperleptinemia, hyperinsulinemia, fatty liver and visceral adipose tissue) that disappeared at week 36, when plasma anti-dsDNA antibodies, lupus nephritis and a pro-autoimmune cytokine profile were detected. BWF1 mice had hyperleptinemia and high splenic Tregs till week 16, thereby pointing to leptin resistance, as confirmed by the lack of increased liver P-Tyr-STAT-3. Hyperinsulinemia was associated with a down-regulation of insulin related-genes only in adipose tissue, whereas expression of liver mammalian target of rapamicyn (mTOR) was increased. Although leptin resistance presented early in BWF1 mice can slow-down the progression of autoimmunity, our results suggest that sustained insulin stimulation of organs, such as liver and probably kidneys, facilitates the over-expression and activity of mTOR and the development of SLE.
Resumo:
BACKGROUND: Endothelin-1 is an endothelium-derived potent vasoconstrictor peptide of 21 amino acids. To establish reference values in different models of hypertension and in human subjects an assay for plasma immunoreactive endothelin-1 (ET-1) was optimized. METHODS: ET-1 is extracted by acetone from 1 mL of plasma and subjected to a sensitive enzyme-linked immunosorbent assay. RESULTS: The detection limit for plasma ET-1 is 0.05 fmol/mL. Mean recoveries of the 1, 2, 5, and 10 fmol of ET-1 added to 1 mL of plasma were 66%, 75%, 85%, and 92%, respectively. Within- and between-assay coefficients of variation were < or =12% and < or =10%, respectively. Assay accuracy was demonstrated by consistent recoveries of added ET-1 over the entire physiologic range of plasma concentrations and by the linearity of ET-1 concentrations measured in serially diluted plasma extracts (r = 0.99). No ET-1 was detected when albumin buffer was extracted instead of plasma. Using this method, we found increased ET-1 levels in plasma of three experimental rat models of hypertension: stroke prone spontaneously hypertensive rats (SP-SHR), deoxycorticosterone acetate-salt hypertensive rats, and one kidney-one clip hypertensive rats. In contrast, plasma ET-1 levels of SHR were half those of normotensive Wistar rats. In two kidney-one clip hypertensive rats, plasma ET-1 concentrations were not different from those found in sham-operated control rats. Plasma ET-1 concentrations of 37 healthy men were 0.85 +/- 0.26 fmol/ml (mean +/- SD). CONCLUSIONS: The present assay reliably measures ET-1 levels in rat and human plasma. It allows to discriminate between different forms of hypertension with high or low circulating levels of ET-1.
Resumo:
RésuméLes récentes thérapies anticancéreuses développées visent principalement à inhiber les protéines mutées et responsables de la croissance des cellules cancéreuses. Dans ce contexte, l'inhibition d'une protéine appelée mTOR est une stratégie prometteuse. En effet, mTOR régule la prolifération et la survie cellulaire et mTOR est fréquemment activé dans les cellules tumorales.De nombreuses études ont démontré l'efficacité anti-tumorale d'inhibiteurs de mTOR telle que la rapamycine aussi bien dans des modèles expérimentaux que chez les patients souffrant de cancers. Ces études ont cependant également démontré que l'inhibition de mTOR induit l'activation d'autres protéines cellulaires qui vont induire la prolifération cellulaire et ainsi limiter l'effet anti-tumoral des inhibiteurs de mTOR. En particulier, la rapamycine induit l'activation de la voie de signalisation PI3K/Akt qui joue un rôle prépondérant dans la croissance cellulaire.Dans ce travail, nous avons étudié l'effet de la rapamycine sur une protéine appelée JNK ainsi que le rôle de JNK sur les effets anti-tumoraux de la rapamycine. JNK est une protéine impliquée dans la survie et la prolifération cellulaire. Elle est activée notamment par la voie de signalisation PI3K/Akt. De ce fait, nous avons émis l'hypothèse que la rapamycine induirait l'activation de JNK, réduisant ainsi l'efficacité anti¬tumorale de la rapamycine. En utilisant une lignée cellulaire tumorale (LS174T) dérivée du cancer colorectal, nous avons observé que la rapamycine induisait l'activation de JNK. Nous avons également observé que l'inhibition de JNK par le SP600125, un inhibiteur chimique de JNK, ou par la surexpression d'un dominant négatif de JNK dans les cellules LS174T potentialisait l'effet anti-tumoral de la rapamycine in vitro ainsi que dans un modèle murin de xénogreffe tumorale in vivo.En conclusion, nous avons observé que l'activation de JNK induite par la rapamycine entraine une réduction de l'effet anti-tumoral de cette dernière. Nous proposons ainsi que l'inhibition simultanée de JNK et de mTOR représente une nouvelle option thérapeutique en oncologie qu'il conviendra de confirmer dans d'autres modèles expérimentaux avant d'être testée dans des études cliniques.
Resumo:
We have studied 65 HIV-1-infected untreated patients recruited in Caracas, Venezuela with TCD4 counts > or =350/microl. The reverse transcriptase and protease sequences of the virus were sequenced, aligned with reference HIV-1 group M strains, and analyzed for drug resistance mutations. Most of the viruses were subtype B genotype in both the protease and RT genomic regions. Five of the 62 virus isolates successfully amplified showed evidence of recombination between protease and RT, with their protease region being non-B while their RT region was derived from subtype B. Four strains were found bearing resistance mutations either to NRTIs, NNRTIs, or PIs. The prevalence of HIV-1 isolates bearing resistance mutations was therefore above the 5% threshold of WHO.
Resumo:
beta-Arrestins regulate the functioning of G protein-coupled receptors in a variety of cellular processes including receptor-mediated endocytosis and activation of signaling molecules such as ERK. A key event in these processes is the G protein-coupled receptor-mediated recruitment of beta-arrestins to the plasma membrane. However, despite extensive knowledge in this field, it is still disputable whether activation of signaling pathways via beta-arrestin recruitment entails paired activation of receptor dimers. To address this question, we investigated the ability of different muscarinic receptor dimers to recruit beta-arrestin-1 using both co-immunoprecipitation and fluorescence microscopy in COS-7 cells. Experimentally, we first made use of a mutated muscarinic M(3) receptor, which is deleted in most of the third intracellular loop (M(3)-short). Although still capable of activating phospholipase C, this receptor loses almost completely the ability to recruit beta-arrestin-1 following carbachol stimulation in COS-7 cells. Subsequently, M(3)-short was co-expressed with the M(3) receptor. Under these conditions, the M(3)/M(3)-short heterodimer could not recruit beta-arrestin-1 to the plasma membrane, even though the control M(3)/M(3) homodimer could. We next tested the ability of chimeric adrenergic muscarinic alpha(2)/M(3) and M(3)/alpha(2) heterodimeric receptors to co-immunoprecipitate with beta-arrestin-1 following stimulation with adrenergic and muscarinic agonists. beta-Arrestin-1 co-immunoprecipitation could be induced only when carbachol or clonidine were given together and not when the two agonists were supplied separately. Finally, we tested the reciprocal influence that each receptor may exert on the M(2)/M(3) heterodimer to recruit beta-arrestin-1. Remarkably, we observed that M(2)/M(3) heterodimers recruit significantly greater amounts of beta-arrestin-1 than their respective M(3)/M(3) or M(2)/M(2) homodimers. Altogether, these findings provide strong evidence in favor of the view that binding of beta-arrestin-1 to muscarinic M(3) receptors requires paired stimulation of two receptor components within the same receptor dimer.
Resumo:
Islet-brain 1 [IB1; also termed c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP-1] is involved in the apoptotic signaling cascade of JNK and functions as a scaffold protein. It organizes several MAP kinases and the microtubule-transport motor protein kinesin and relates to other signal-transducing molecules such as the amyloid precursor protein. Here we have identified IB1/JIP-1 using different antibodies that reacted with either a monomeric or a dimeric form of IB1/JIP-1. By immunoelectron microscopy, differences in the subcellular localization were observed. The monomeric form was found in the cytoplasmic compartment and is associated with the cytoskeleton and with membranes, whereas the dimeric form was found in addition in nuclei. After treatment of mouse brain homogenates with alkaline phosphatase, the dimeric form disappeared and the monomeric form decreased its molecular weight, suggesting that an IB1/JIP-1 dimerization is phosphorylation dependent and that IB1 exists in several phospho- forms. N-methyl-D-aspartate receptor activation induced a dephosphorylation of IB1/JIP-1 in primary cultures of cortical neurons and reduced homodimerization. In conclusion, these data suggest that IB1/JIP-1 monomers and dimers may differ in compartmental localization and thus function as a scaffold protein of the JNK signaling cascade in the cytoplasm or as a transcription factor in nuclei.
Resumo:
Transmission of drug-resistant pathogens presents an almost-universal challenge for fighting infectious diseases. Transmitted drug resistance mutations (TDRM) can persist in the absence of drugs for considerable time. It is generally believed that differential TDRM-persistence is caused, at least partially, by variations in TDRM-fitness-costs. However, in vivo epidemiological evidence for the impact of fitness costs on TDRM-persistence is rare. Here, we studied the persistence of TDRM in HIV-1 using longitudinally-sampled nucleotide sequences from the Swiss-HIV-Cohort-Study (SHCS). All treatment-naïve individuals with TDRM at baseline were included. Persistence of TDRM was quantified via reversion rates (RR) determined with interval-censored survival models. Fitness costs of TDRM were estimated in the genetic background in which they occurred using a previously published and validated machine-learning algorithm (based on in vitro replicative capacities) and were included in the survival models as explanatory variables. In 857 sequential samples from 168 treatment-naïve patients, 17 TDRM were analyzed. RR varied substantially and ranged from 174.0/100-person-years;CI=[51.4, 588.8] (for 184V) to 2.7/100-person-years;[0.7, 10.9] (for 215D). RR increased significantly with fitness cost (increase by 1.6[1.3,2.0] per standard deviation of fitness costs). When subdividing fitness costs into the average fitness cost of a given mutation and the deviation from the average fitness cost of a mutation in a given genetic background, we found that both components were significantly associated with reversion-rates. Our results show that the substantial variations of TDRM persistence in the absence of drugs are associated with fitness-cost differences both among mutations and among different genetic backgrounds for the same mutation.
Resumo:
The phototropin 1 (phot1) blue light receptor mediates a number of adaptive responses, including phototropism, that generally serve to optimize photosynthetic capacity. Phot1 is a plasma membrane-associated protein, but upon irradiation, a fraction is internalized into the cytoplasm. Although this phenomenon has been reported for more than a decade, its biological significance remains elusive. Here, we use a genetic approach to revisit the prevalent hypotheses regarding the functional importance of receptor internalization. Transgenic plants expressing lipidated versions of phot1 that are permanently anchored to the plasma membrane were used to analyse the effect of internalization on receptor turnover, phototropism and other phot1-mediated responses. Myristoylation and farnesylation effectively prevented phot1 internalization. Both modified photoreceptors were found to be fully functional in Arabidopsis, rescuing phototropism and all other phot1-mediated responses tested. Light-mediated phot1 turnover occurred as in the native receptor. Furthermore, our work does not provide any evidence of a role of phot1 internalization in the attenuation of receptor signalling during phototropism. Our results demonstrate that phot1 signalling is initiated at the plasma membrane. They furthermore indicate that release of phot1 into the cytosol is not linked to receptor turnover or desensitization.
Resumo:
Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key insights into the biology of human diseases and paved the way for the development of novel therapeutic approaches.
Resumo:
Although body ownership-i.e. the feeling that our bodies belong to us-modulates activity within the primary somatosensory cortex (S1), it is still unknown whether this modulation occurs within a somatotopically defined portion of S1. We induced an illusory feeling of ownership for another person's finger by asking participants to hold their palm against another person's palm and to stroke the two joined index fingers with the index and thumb of their other hand. This illusion (numbness illusion) does not occur if the stroking is performed asynchronously or by the other person. We combined this somatosensory paradigm with ultra-high field functional magnetic resonance imaging finger mapping to study whether illusory body ownership modulates activity within different finger-specific areas of S1. The results revealed that the numbness illusion is associated with activity in Brodmann area (BA) 1 within the representation of the finger stroking the other person's finger and in BA 2 contralateral to the stroked finger. These results show that changes in bodily experience modulate the activity within certain subregions of S1, with a different finger-topographical selectivity between the representations of the stroking and of the stroked hand, and reveal that the high degree of somatosensory specialization in S1 extends to bodily self-consciousness.
Resumo:
Nanoantennae show potential for photosynthesis research for two reasons; first by spatially confining light for experiments which require high spatial resolution, and second by enhancing the photon emission of single light-harvesting complexes. For effective use of nanoantennae a detailed understanding of the interaction between the nanoantenna and the light-harvesting complex is required. Here we report how the excitation and emission of multiple purple bacterial LH2s (light-harvesting complex 2) are controlled by single gold nanorod antennae. LH2 complexes were chemically attached to such antennae, and the antenna length was systematically varied to tune the resonance with respect to the LH2 absorption and emission. There are three main findings. (i) The polarization of the LH2 emission is fully controlled by the resonant nanoantenna. (ii) The largest fluorescence enhancement, of 23 times, is reached for excitation with light at λ = 850 nm, polarized along the long antenna-axis of the resonant antenna. The excitation enhancement is found to be 6 times, while the emission efficiency is increased 3.6 times. (iii) The fluorescence lifetime of LH2 depends strongly on the antenna length, with shortest lifetimes of [similar]40 ps for the resonant antenna. The lifetime shortening arises from an 11 times resonant enhancement of the radiative rate, together with a 2–3 times increase of the non-radiative rate, compared to the off-resonant antenna. The observed length dependence of radiative and non-radiative rate enhancement is in good agreement with simulations. Overall this work gives a complete picture of how the excitation and emission of multi-pigment light-harvesting complexes are influenced by a dipole nanoantenna.
Resumo:
The total synthesis of seven here-to-fore unreported aromatic aminoalkanethiosulfuric acids, their physical properties and those of the aminoalcohol and bromoalkanamine intermediates are reported. All structures were established by including ¹H and 13C NMR, IR and MS spectroscopy and elemental analysis.
Resumo:
In this work we describe a new efficient strategy for the preparation of 1,2,4-trimethoxybenzene (3) in 56% overall yield. The compound 3 was used in a preliminary study of insect attraction by a mixture of semiochemicals called TIV, composed of indol (1), vanillin (2) and 1,2,4-trimethoxybenzene (3), in eight Mc Phail style traps installed at a domestic orchard of citric-culture, containing 120 trees not infected by plagues in Bom Jesus Farm, located next to a patch of the Atlantic Forest, at Silva Jardim, Rio de Janeiro, Brazil.