882 resultados para Low molecular weight oxidized material


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pressure-sensitive adhesives (PSAs) have applications in the fields of packaging, joining, wound care, and personal care. Depending on the application of the PSA, different performance tests are carried out when new products are developed or the quality of the existing products is checked. Tack is the property of an adhesive that enables it to form instant bond on the surface under light pressure. The tack of a PSA strongly depends on the way the bond is created. Parameters such as the bonded area, contact time and the nature of tack materials all affect the tack force measured. In the development of any PSA, it is desirable to correlate the performance related properties such as tack and peel strength to the rheological behaviour. Finding these correlations would make it possible to evaluate the performance of a PSA using its rheological characteristics. In this investigation we have studied the influence of rheological behaviour of three different PSAs on their tackiness. The three different PSAs used in this study are a low molecular weight rosin ester, high molecular weight rosin ester, and dicyclopentadiene. Various rheological properties such as viscosity, phase angle, and elastic and viscous moduli are measured versus the frequency and temperature. Also the tack properties at various removal speeds and temperatures are evaluated. Analysis of the results indicates different performances of the three PSAs which could be related to their rheological properties, especially the phase angle, at different frequencies and temperatures. The PSA with high molecular weight rosin ester is more sensitive to temperature changes and showed drastic changes in tackiness from high temperature to low temperature. On the other hand, rosin ester with low molecular weight is less sensitive to temperature changes. © 2010 VSP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burkholderia cenocepacia infects patients with cystic fibrosis. We have previously shown that B. cenocepacia can survive in macrophages within membrane vacuoles (BcCVs) that preclude fusion with the lysosome. The bacterial factors involved in B. cenocepacia intracellular survival are not fully elucidated. We report here that deletion of BCAM0628, encoding a predicted low-molecular weight protein tyrosine phosphatase (LMW-PTP) that is restricted to B. cenocepacia strains of the transmissible ET-12 clone, accelerates the maturation of the BcCVs. Compared to parental strain and deletion mutants in other LMW-PTPs that are widely conserved in Burkholderia species, a greater proportion of BcCVs containing the BCAM0628 mutant were targeted to the lysosome. Accelerated BcCV maturation was not due to reduced intracellular viability since BCAM0628 survived and replicated in macrophages similarly to the parental strain. Therefore, BCAM0628 was referred to as dpm (delayed phagosome maturation). We provide evidence that the Dpm protein is secreted during growth in vitro and upon macrophage infection. Dpm secretion requires an N-terminal signal peptide. Heterologous expression of Dpm in B. multivorans confers to this bacterium a similar phagosomal maturation delay as found with B. cenocepacia. We demonstrate that Dpm is an inactive phosphatase, suggesting that its contribution to phagosomal maturation arrest must be unrelated to tyrosine phosphatase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure was developed to extract polyols and trehalose (protectants against stress) from fungal conidia. Conidia were sonicated (120 s) and immersed in a boiling water bath (5.5 min) to optimize extraction of polyols and trehalose, respectively. A rapid method was developed to separate and detect low-molecular-weight polyols and trehalose using high-performance liquid chromatography (HPLC). An ion exchange column designed for standard carbohydrate analysis was used in preference to one designed for sugar alcohol separation. This resulted in rapid elution (less than 5 min), without sacrificing peak resolution. The use of a pulsed electrochemical detector (gold electrode) resulted in limits of reliable quantification as low as 1.6 μg ml-1 for polyols and 2.8 μg ml-1 for trehalose. This is very sensitive and rapid method by which these protectants can be analysed. It avoids polyol derivatization that characterizes analysis by gas chromatography and the long run times (up to 45 min) that typify HPLC analysis using sugar alcohol columns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dehydration of the airway surface liquid (ASL) and the resultant decline in function of the mucociliary escalator in cystic fibrosis airways is largely underpinned by the excessive flux of Na+ and water though ENaC. Proteolysis of the endogenous  and  subunits of epithelial sodium channels (ENaC) by channel activating proteases (CAPS) is the key regulatory mechanism for channel activation. Recent reports highlight that (1) CFTR (cystic fibrosis transmembrane conductance regulator) normally protects ENaC from the action of proteases and (2) a stark imbalance in proteases/protease inhibitor levels in CF airway cultures favour activation of normally inactive ENaC. The current study examines the potential therapeutic benefit of CAPS/ENaC inhibition in CF airways.
Our group has developed a panel of active-site directed affinity-based probes which target and inhibit trypsin-like proteases (potential CAPS); including the broad-spectrum inhibitor QUB-TL1. We have utilised this compound to interrogate the impact of trypsin-like protease inhibition on ENaC activity in differentiated primary airway epithelial cell cultures.
Electrophysiological data demonstrate QUB-TL1 selectively and irreversibly binds to extracellularly located trypsin-like proteases resulting in impaired ENaC-mediated Na+ transport. Visualisation of ENaC at the apical surface compartment of primary airway epithelial cells shows a large reduction in a low molecular weight (processed and active) form of ENaC, which was found to be abundant in untreated CF cultures. Consistent with the reduction in ENaC activity observed, QUB-TL1 treatment was subsequently shown to increase ASL height (performed in collaboration with Royal College of Surgeons in Ireland).
Our results are consistent with the hypothesis that targeting the CAPS-ENaC signalling axis may restore the depleted ASL seen in CF airways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhizosphere processes play a key role in nutrient cycling in terrestrial ecosystems. Plant rhizodeposits supply low-molecular weight carbon substrates to the soil microbial community, resulting in elevated levels of activity surrounding the root. Mechanistic compartmental models that aim to model carbon flux through the rhizosphere have been reviewed and areas of future research necessary to better calibrate model parameters have been identified. Incorporating the effect of variation in bacterial biomass physiology on carbon flux presents a considerable challenge to experimentalists and modellers alike due to the difficulties associated with differentiating dead from dormant cells. A number of molecular techniques that may help to distinguish between metabolic states of bacterial cells are presented. The calibration of growth, death and maintenance parameters in rhizosphere models is also discussed. A simple model of rhizosphere carbon flow has been constructed and a sensitivity analysis was carried out on the model to highlight which parameters were most influential when simulating carbon flux. It was observed that the parameters that most heavily influenced long-term carbon compartmentalisation in the rhizosphere were exudation rate and biomass yield. It was concluded that future efforts to simulate carbon flow in the rhizosphere should aim to increase ecological realism in model structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impending and increasing threat of antimicrobial resistance has led to a greater focus into developing alternative therapies as substitutes for traditional antibiotics for the treatment of multi-drug resistant infections.1 Our group has developed a library of short, cost-effective, diphenylalanine-based peptides (X1-FF-X2) which selective eradicate (viability reduced >90% in 24 hours) the most resistant biofilm forms of a range of Gram-positive and negative pathogens including: methicillin resistant and sensitive Staphyloccoccus aureus and Staphyloccoccus epidermidis; Pseudomonas aeruginosa, Proteus mirabilis and Escherichia coli. They demonstrate a reduced cell cytotoxic profile (NCTC929 murine fibroblast) and limited haemolysis.2 Our molecules have the ability respond to subtle changes in pH, associated with bacterial infection, self-assembling to form β-sheet secondary structures and supramolecular hydrogels at low concentrations (~0.5%w/v). Conjugation of variety of aromatic-based drugs at the X1 position, including non-steroidal anti-inflammatories (NSAIDs), confer further pharmacological properties to the peptide motif enhancing their therapeutic potential. In vivo studies using waxworms (Galleria mellonella) provide promising preliminary results demonstrating the low toxicity and high antimicrobial activity of these low molecular weight gelators in animal models. This work shows biofunctional peptide-based nanomaterials hold great promise for future translation to patients as antimicrobial drug delivery and biomaterial platforms.3 [1] G. Laverty, S.P. Gorman and B.F. Gilmore. Int.J.Mol.Sci. 2011, 12, 6566-6596. [2] G. Laverty, A.P. McCloskey, B.F. Gilmore, D.S. Jones, J Zhou, B Xu. Biomacromolecules. 2014, 15, 9, 3429-3439. [3] A.P. McCloskey, B.F. Gilmore and G.Laverty. Pathogens. 2014, 3, 791-821.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a comparison of different methods to predict drug−polymer solubility was carried out on binary systems consisting of five model drugs (paracetamol, chloramphenicol, celecoxib, indomethacin, and felodipine) and polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios. The drug−polymer solubility at 25 °C was predicted using the Flory−Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point depression method. These predictions were compared with the solubility in the low molecular weight liquid analogues of the PVP/VA copolymer (N-vinylpyrrolidone and vinyl acetate). The predicted solubilities at 25 °C varied considerably depending on the method used. However, the three thermal analysis methods ranked the predicted solubilities in the same order, except for the felodipine−PVP system. Furthermore, the magnitude of the predicted solubilities from the recrystallization method and melting point depression method correlated well with the estimates based on the solubility in the liquid analogues, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug−polymer solubility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burkholderia cenocepacia, a member of the B. cepacia complex (Bcc), is an opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis. Tyrosine phosphorylation has emerged as an important post-translational modification modulating the physiology and pathogenicity of Bcc bacteria. Here, we investigated the predicted bacterial tyrosine kinases BCAM1331 and BceF, and the low molecular weight protein tyrosine phosphatases BCAM0208, BceD and BCAL2200 of B. cenocepacia K56-2. We show that BCAM1331, BceF, BCAM0208 and BceD contributed to biofilm formation, while BCAL2200 was required for growth in nutrient-limited conditions. Multiple deletions of either tyrosine kinase or low molecular weight protein tyrosine phosphatases genes resulted in attenuation of B. cenocepacia intramacrophage survival and reduced pathogenicity in the Galleria mellonella larvae infection model. Experimental evidence indicates that BCAM1331 displays a reduced
tyrosine autophosphorylation activity compared to BceF. Using the artificial substrate p-nitrophenyl phosphate, the phosphatase activity of the three low molecular weight protein tyrosine phosphatases demonstrated similar kinetic parameters. However, only BCAM0208 and BceD could dephosphorylate BceF. Further, BCAL2200 becomes tyrosine phosphorylated in vivo and catalyzes its auto-dephosphorylation. Together, our data suggest that despite having similar biochemical activities low molecular weight protein tyrosine phosphatases and tyrosine kinases have both overlapping and specific roles in the physiology of B. cenocepacia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A vida da sociedade atual é dependente dos recursos fósseis, tanto a nível de energia como de materiais. No entanto, tem-se verificado uma redução das reservas destes recursos, ao mesmo tempo que as necessidades da sociedade continuam a aumentar, tornando cada vez mais necessárias, a produção de biocombustíveis e produtos químicos. Atualmente o etanol é produzido industrialmente a partir da cana-de-açúcar e milho, matérias-primas usadas na alimentação humana e animal. Este fato desencadeou o aumento de preços dos alimentos em todo o mundo e, como consequência, provocou uma série de distúrbios sociais. Os subprodutos industriais, recursos independentes das cadeias alimentares, têm-se posicionado como fonte de matérias-primas potenciais para bioprocessamento. Neste sentido, surgem os subprodutos gerados em grande quantidade pela indústria papeleira. Os licores de cozimento da madeira ao sulfito ácido (SSLs) são uma matériaprima promissora, uma vez que durante este processo os polissacarídeos da madeira são hidrolisados originando açúcares fermentáveis. A composição dos SSLs varia consoante o tipo de madeira usada no processo de cozimento (de árvores resinosas, folhosas ou a mistura de ambas). O bioprocessamento do SSL proveniente de folhosas (HSSL) é uma metodologia ainda pouco explorada. O HSSL contém elevadas concentrações de açúcares (35-45 g.L-1), na sua maioria pentoses. A fermentação destes açúcares a bioetanol é ainda um desafio, uma vez que nem todos os microrganismos são capazes de fermentar as pentoses a etanol. De entre as leveduras capazes de fermentar naturalmente as pentoses, destaca-se a Scheffersomyces stipitis, que apresenta uma elevada eficiência de fermentação. No entanto, o HSSL contém também compostos conhecidos por inibirem o crescimento de microrganismos, dificultando assim o seu bioprocessamento. Neste sentido, o principal objetivo deste trabalho foi a produção de bioetanol pela levedura S. stipitis a partir de HSSL, resultante do cozimento ao sulfito ácido da madeira de Eucalyptus globulus. Para alcançar este objetivo, estudaram-se duas estratégias de operação diferentes. Em primeiro lugar estudou-se a bio-desintoxicação do HSSL com o fungo filamentoso Paecilomyces variotii, conhecido por crescer em resíduos industriais. Estudaram-se duas tecnologias fermentativas diferentes para a biodesintoxicação do HSSL: um reator descontínuo e um reator descontínuo sequencial (SBR). A remoção biológica de inibidores do HSSL foi mais eficaz quando se usou o SBR. P. variotii assimilou alguns inibidores microbianos como o ácido acético, o ácido gálico e o pirogalol, entre outros. Após esta desintoxicação, o HSSL foi submetido à fermentação com S. stipitis, na qual foi atingida a concentração máxima de etanol de 2.36 g.L-1 com um rendimento de 0.17 g.g-1. P. variotti, além de desintoxicar o HSSL, também é útil na produção de proteína microbiana (SCP) para a alimentação animal pois, a sua biomassa é rica em proteína. O estudo da produção de SCP por P. variotii foi efetuado num SBR com HSSL sem suplementos e suplementado com sais. A melhor produção de biomassa foi obtida no HSSL sem adição de sais, tendo-se obtido um teor de proteína elevado (82,8%), com uma baixa concentração de DNA (1,1%). A proteína continha 6 aminoácidos essenciais, mostrando potencial para o uso desta SCP na alimentação animal e, eventualmente, em nutrição humana. Assim, a indústria papeleira poderá integrar a produção de bioetanol após a produção SCP e melhorar a sustentabilidade da indústria de pastas. A segunda estratégia consistiu em adaptar a levedura S. stipitis ao HSSL de modo a que esta levedura conseguisse crescer e fermentar o HSSL sem remoção de inibidores. Operou-se um reator contínuo (CSTR) com concentrações crescentes de HSSL, entre 20 % e 60 % (v/v) durante 382 gerações em HSSL, com uma taxa de diluição de 0.20 h-1. A população adaptada, recolhida no final do CSTR (POP), apresentou uma melhoria na fermentação do HSSL (60 %), quando comparada com a estirpe original (PAR). Após esta adaptação, a concentração máxima de etanol obtida foi de 6.93 g.L-1, com um rendimento de 0.26 g.g-1. POP possuía também a capacidade de metabolizar, possivelmente por ativação de vias oxidativas, compostos derivados da lenhina e taninos dissolvidos no HSSL, conhecidos inibidores microbianos. Por fim, verificou-se também que a pré-cultura da levedura em 60 % de HSSL fez com que a estirpe PAR melhorasse o processo fermentativo em HSSL, em comparação com o ensaio sem pré-cultura em HSSL. No entanto, no caso da estirpe POP, o seu metabolismo foi redirecionado para a metabolização dos inibidores sendo que a produção de etanol decresceu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salt marshes are highly productive intertidal habitats that serve as nursery grounds for many commercially and economically important species. Because of their location and physical and biological characteristics, salt marshes are considered to be particularly vulnerable to anthropogenic inputs of oil hydrocarbons. Sediment contamination with oil is especially dangerous for salt marsh vegetation, since low molecular weight aromatic hydrocarbons can affect plants at all stages of development. However, the use of vegetation for bioremediation (phytoremediation), by removal or sequestration of contaminants, has been intensively studied. Phytoremediation is an efficient, inexpensive and environmental friendly approach for the removal of aromatic hydrocarbons, through direct incorporation by the plant and by the intervention of degrading microbial populations in the rhizosphere (microbe-assisted phytoremediation). Rhizosphere microbial communities are enriched in important catabolic genotypes for degradation of oil hydrocarbons (OH) which may have a potential for detoxification of the sediment surrounding the roots. In addition, since rhizosphere bacterial populations may also internalize into plant tissues (endophytes), rhizocompetent AH degrading populations may be important for in planta AH degradation and detoxification. The present study involved field work and microcosms experiments aiming the characterization of relevant plant-microbe interactions in oilimpacted salt marshes and the understanding of the effect of rhizosphere and endosphere bacteria in the role of salt marsh plants as potential phytoremediation agents. In the field approach, molecular tools were used to assess how plant species- and OH pollution affect sediment bacterial composition [bulk sediment and sediment surrounding the roots (rhizosphere) of Halimione portulacoides and Sarcocornia perennis subsp. perennis] in a temperate estuary (Ria de Aveiro, Portugal) chronically exposed to OH pollution. In addition, the 16S rRNA gene sequences retrieved in this study were used to generate in silico metagenomes and to evaluate the distribution of potential bacterial traits in different microhabitats. Moreover, a combination of culture-dependent and -independent approaches was used to investigate the effect of oil hydrocarbons contamination on the structure and function of endophytic bacterial communities of salt marsh plants.Root systems of H. portulacoides and S. perennis subsp. perennis appear to be able to exert a strong influence on bacterial composition and in silico metagenome analysis showed enrichment of genes involved in the process of polycyclic aromatic hydrocarbon (PAH) degradation in the rhizosphere of halophyte plants. The culturable fraction of endophytic degraders was essentially closely related to known OH-degrading Pseudomonas species and endophytic communities revealed sitespecific effects related to the level of OH contamination in the sediment. In order to determine the effects of oil contamination on plant condition and on the responses in terms of structure and function of the bacterial community associated with plant roots (rhizosphere, endosphere), a microcosms approach was set up. The salt marsh plant Halimione portulacoides was inoculated with a previous isolated Pseudomonas sp. endophytic degrader and the 2-methylnaphthalene was used as model PAH contaminant. The results showed that H. portulacoides health and growth were not affected by the contamination with the tested concentration. Moreover, the decrease of 2-methylnaphthalene at the end of experiment, can suggest that H. portulacoides can be considered as a potential plant for future uses in phytoremedition approaches of contaminated salt marsh. The acceleration of hydrocarbon degradation by inoculation of the plants with the hydrocarbon-degrading Pseudomonas sp. could not, however, be demonstrated, although the effects of inoculation on the structure of the endophytic community observed at the end of the experiment indicate that the strain may be an efficient colonizer of H. portulacoides roots. The results obtained in this work suggest that H. portulacoides tolerates moderate concentrations of 2-methylnaphthalene and can be regarded as a promising agent for phytoremedition approaches in salt marshes contaminated with oil hydrocarbons. Plant/microbe interactions may have an important role in the degradation process, as plants support a diverse endophytic bacterial community, enriched in genetic factors (genes and plasmids) for hydrocarbon degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Biologia Molecular), Universidade de Lisboa, Faculdade de Ciências, 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural workers especially poultry farmers are at increased risk of occupational respiratory diseases. Epidemiological studies showed increased prevalence of respiratory symptoms and adverse changes in pulmonary function parameters in poultry workers. In poultry production volatile organic compounds (VOCs) presence can be due to some compounds produced by molds that are volatile and are released directly into the air. These are known as microbial volatile organic compounds (MVOCs). Because these compounds often have strong and/or unpleasant odors, they can be the source of odors associated with molds. MVOC's are products of the microorganisms primary and secondary metabolism and are composed of low molecular weight alcohols, aldehydes, amines, ketones, terpenes, aromatic and chlorinated hydrocarbons, and sulfur-based compounds, all of which are variations of carbon-based molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This retrospective study was designed to evaluate the outcome of pregnancies in women diagnosed with systemic lupus erythematosus (SLE) followed in a tertiary fetal–maternal center. Data were collected from clinical charts between January 1993 and December 2007, with a total of 136 pregnancies (107 patients). Mean maternal age was 29 years, with the vast majority of patients being Caucasian. Most patients were in remission 6 months prior to pregnancy (93%) and the most frequently affected organs were the skin and joints. Renal lupus accounted for 14% of all cases. Twenty-nine percent of patients were positive for at least one antiphospholid antibody (aPL) and nearly 50% had positive SSa/SSb antibodies. All patients with positive aPL received low-dosage aspirin and low molecular- weight heparin (LMWH). There were no pregnancy complications in more than 50% of cases and hypertensive disease and intrauterine growth restriction were the most common adverse events. There were 125 live births, one neonatal death, eight miscarriages, and three medical terminations of pregnancy. Preterm delivery occurred in 25% of pregnancies. Our results are probably the conjoined result of a multidisciplinary approach together with a systematic management of SLE pregnancies, with most patients keeping their prior SLE medication combined with low-dosage aspirin and LMWH in the presence of aPL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction:Women with antiphospholipid syndrome(APS) may suffer from recurrent miscarriage, fetal death, fetal growth restriction (FGR), pre-eclampsia, placental abruption, premature delivery and thrombosis. Treatment with aspirin and low molecular weight heparin (LMWH) combined with close maternal-fetal surveillance can change these outcomes. Objective: To assess maternal and perinatal outcome in a cohort of Portuguese women with primary APS. Patients and Methods: A retrospective analysis of 51 women with primary APS followed in our institution (January 1994 to December 2007). Forty one(80.4%) had past pregnancy morbidity and 35.3%(n=18) suffered previous thrombotic events. In their past they had a total of 116 pregnancies of which only 13.79 % resulted in live births. Forty four patients had positive anticardiolipin antibodies and 33 lupus anticoagulant. All women received treatment with low dose aspirin and LMWH. Results: There were a total of 67 gestations (66 single and one multiple). The live birth rate was 85.1%(57/67) with 10 pregnancy failures: seven in the first and second trimesters, one late fetal death and two medical terminations of pregnancy (one APS related). Mean (± SD) birth weight was 2837 ± 812 g and mean gestational age 37 ± 3.3 weeks. There were nine cases of FGR and 13 hypertensive complications(4 HELLP syndromes). 54.4% of the patients delivered by caesarean section. Conclusions: In our cohort, early treatment with aspirin and LMWH combined with close maternal-fetal surveillance was associated with a very high chance of a live newborn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de mestrado em Biologia Humana e Ambiente, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015