959 resultados para Litter decomposition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts that possess high activities for NH3 decomposition have been successfully synthesized by a coprecipitation method. The catalytic performance was investigated under the atmospheric conditions and a significant enhancement in the activity after the introduction of La was observed. Aiming to study the influence of La promoter on the physicochemical properties, we characterized the catalysts by N-2 adsorption/desorption, XRD, H-2-TPR, chemisorption and TEM techniques. Physisorption results suggested a high specific surface area and XRD spectra showed that nickel particles are in a highly dispersed state. A combination of XRD, TEM and chemisorption showed that Ni-0 particles with the average size lower, than 5.0 nm are always obtained even though the Ni loading ranged widely from 4 to 63 %. Compared with the Ni/Al2O3 catalysts, the Ni/La-Al2O3 ones with an appropriate amount of promoter enjoy a more open mesoporous structure and higher dispersion of Ni. Reduction kinetic studies of prepared catalysts were investigated by temperature-programmed reduction (TPR) method and the fact that La additive partially destroyed the metastable Ni-Al mixed oxide phase was detailed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcalorimetric studies of H-2, NH3 and O-2 adsorption, as well as the NH3 decomposition activities evaluation were used to characterize the iridium catalysts for hydrazine decomposition with different supports (Al2O3, SiO,) and iridium contents (1.8, 10.8 and 22.1%). The higher H-2 chemisorption amounts on Ir/Al2O3 catalysts than those on the corresponding Ir/SiO2 counterparts revealed that the strong interaction of iridium and Al2O3 led to higher dispersion of iridium on Ir/Al2O3 catalysts than on Ir/SiO2 catalysts. The larger increase in strong H-2 adsorption sites on highly loaded Ir/Al2O3 than the corresponding Ir/SiO2 ones could be attributed to the interaction not only between iridium atoms but also between iridium and Al2O3. The microcalorimetric results for NH3 adsorption showed that no apparent chemisorption of NH3 existed on Ir/SiO2 catalysts while NH3 chemisorption amounts increased on Ir/Al2O3 catalysts with iridium loadings, which arose from the interaction of the catalysts support of Al2O3 With chloride anion. Both highly dispersed iridium active sites and chloride anion on Ir/Al2O3 catalysts could be beneficial to the intermediate NH3 decomposition in N2H4 decomposition. The similar O-2 plots of differential heat versus normalized coverage on Ir/Al2O3 and Ir/SiO2 catalysts could not be due to the metal-support interaction, but to the formation of strong Ir-O bond. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coastal lagoons are defined as shallow coastal water bodies partially separated from the adjacent sea by a restrictive barrier. Coastal lagoons are protected under Annex I of the European Habitats Directive (92/43/EEC). Lagoons are also considered to be “transitional water bodies” and are therefore included in the “register of protected areas” under the Water Framework Directive (2000/60/EC). Consequently, EU member states are required to establish monitoring plans and to regularly report on lagoon condition and conservation status. Irish lagoons are considered relatively rare and unusual because of their North Atlantic, macrotidal location on high energy coastlines and have received little attention. This work aimed to assess the physicochemical and ecological status of three lagoons, Cuskinny, Farranamanagh and Toormore, on the southwest coast of Ireland. Baseline salinity, nutrient and biological conditions were determined in order to provide reference conditions to detect perturbations, and to inform future maintenance of ecosystem health. Accumulation of organic matter is an increasing pressure in coastal lagoon habitats worldwide, often compounding existing eutrophication problems. This research also aimed to investigate the in situ decomposition process in a lagoon habitat together with exploring the associated invertebrate assemblages. Re-classification of the lagoons, under the guidelines of the Venice system for the classifications of marine waters according to salinity, was completed by taking spatial and temporal changes in salinity regimes into consideration. Based on the results of this study, Cuskinny, Farranamanagh and Toormore lagoons are now classified as mesohaline (5 ppt – 18 ppt), oligohaline (0.5 ppt – 5 ppt) and polyhaline (18 ppt – 30 ppt), respectively. Varying vertical, longitudinal and transverse salinity patterns were observed in the three lagoons. Strong correlations between salinity and cumulative rainfall highlighted the important role of precipitation in controlling the lagoon environment. Maximum effect of precipitation on the salinity of the lagoon was observed between four and fourteen days later depending on catchment area geology, indicating the uniqueness of each lagoon system. Seasonal nutrient patterns were evident in the lagoons. Nutrient concentrations were found to be reflective of the catchment area and the magnitude of the freshwater inflow. Assessment based on the Redfield molar ratio indicated a trend towards phosphorus, rather than nitrogen, limitation in Irish lagoons. Investigation of the decomposition process in Cuskinny Lagoon revealed that greatest biomass loss occurred in the winter season. Lowest biomass loss occurred in spring, possibly due to the high density of invertebrates feeding on the thick microbial layer rather than the decomposing litter. It has been reported that the decomposition of plant biomass is highest in the preferential distribution area of the plant species; however, no similar trend was observed in this study with the most active zones of decomposition varying spatially throughout the seasons. Macroinvertebrate analysis revealed low species diversity but high abundance, indicating the dominance of a small number of species. Invertebrate assemblages within the lagoon varied significantly from communities in the adjacent freshwater or marine environments. Although carried out in coastal lagoons on the southwest coast of Ireland, it is envisaged that the overall findings of this study have relevance throughout the entire island of Ireland and possibly to many North Atlantic coastal lagoon ecosystems elsewhere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electroencephalogram (EEG) is an important noninvasive tool used in the neonatal intensive care unit (NICU) for the neurologic evaluation of the sick newborn infant. It provides an excellent assessment of at-risk newborns and formulates a prognosis for long-term neurologic outcome.The automated analysis of neonatal EEG data in the NICU can provide valuable information to the clinician facilitating medical intervention. The aim of this thesis is to develop a system for automatic classification of neonatal EEG which can be mainly divided into two parts: (1) classification of neonatal EEG seizure from nonseizure, and (2) classifying neonatal background EEG into several grades based on the severity of the injury using atomic decomposition. Atomic decomposition techniques use redundant time-frequency dictionaries for sparse signal representations or approximations. The first novel contribution of this thesis is the development of a novel time-frequency dictionary coherent with the neonatal EEG seizure states. This dictionary was able to track the time-varying nature of the EEG signal. It was shown that by using atomic decomposition and the proposed novel dictionary, the neonatal EEG transition from nonseizure to seizure states could be detected efficiently. The second novel contribution of this thesis is the development of a neonatal seizure detection algorithm using several time-frequency features from the proposed novel dictionary. It was shown that the time-frequency features obtained from the atoms in the novel dictionary improved the seizure detection accuracy when compared to that obtained from the raw EEG signal. With the assistance of a supervised multiclass SVM classifier and several timefrequency features, several methods to automatically grade EEG were explored. In summary, the novel techniques proposed in this thesis contribute to the application of advanced signal processing techniques for automatic assessment of neonatal EEG recordings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poultry litter contains high levels of natural sex hormones, nitrogen, phosphorous, and trace amounts of heavy metals. Poultry litter runoff from poultry and farming operations in the Delmarva region can have serious impacts on frog development in the Chesapeake Bay Watershed. In this study, we investigated potential effects of litter compounds on Xenopus laevis development when exposed to environmental levels (0.35 and 0.70 g/L) of litter solution. We found that despite rapid hormone degradation, poultry litter solution still affected X. laevis development. Hormones were also more persistent in the lower poultry litter concentration, leading to even greater effects. Slowed growth and increased female gonadal abnormalities were observed after exposure to 0.35 g/L but not to 0.70 g/L of litter solution, and increased male gonadal abnormalities were observed after treatment to both litter concentrations. The developmental impacts examined in this study may have greater environmental impacts on frog reproduction and survival.