930 resultados para Linear optimization approach
Resumo:
In this paper a study of the free, forced and self-excited vibrations of non-linear, two degrees of freedom systems is reported. The responses are obtained by linearizing the nonlinear equations using the weighted mean square linearization approach. The scope of this approach, in terms of the type of non-linearities the method can tackle, is also discussed.
Resumo:
Determination of the environmental factors controlling earth surface processes and landform patterns is one of the central themes in physical geography. However, the identification of the main drivers of the geomorphological phenomena is often challenging. Novel spatial analysis and modelling methods could provide new insights into the process-environment relationships. The objective of this research was to map and quantitatively analyse the occurrence of cryogenic phenomena in subarctic Finland. More precisely, utilising a grid-based approach the distribution and abundance of periglacial landforms were modelled to identify important landscape scale environmental factors. The study was performed using a comprehensive empirical data set of periglacial landforms from an area of 600 km2 at a 25-ha resolution. The utilised statistical methods were generalized linear modelling (GLM) and hierarchical partitioning (HP). GLMs were used to produce distribution and abundance models and HP to reveal independently the most likely causal variables. The GLM models were assessed utilising statistical evaluation measures, prediction maps, field observations and the results of HP analyses. A total of 40 different landform types and subtypes were identified. Topographical, soil property and vegetation variables were the primary correlates for the occurrence and cover of active periglacial landforms on the landscape scale. In the model evaluation, most of the GLMs were shown to be robust although the explanation power, prediction ability as well as the selected explanatory variables varied between the models. The great potential of the combination of a spatial grid system, terrain data and novel statistical techniques to map the occurrence of periglacial landforms was demonstrated in this study. GLM proved to be a useful modelling framework for testing the shapes of the response functions and significances of the environmental variables and the HP method helped to make better deductions of the important factors of earth surface processes. Hence, the numerical approach presented in this study can be a useful addition to the current range of techniques available to researchers to map and monitor different geographical phenomena.
Resumo:
The transfer matrix method is known to be well suited for a complete analysis of a lumped as well as distributed element, one-dimensional, linear dynamical system with a marked chain topology. However, general subroutines of the type available for classical matrix methods are not available in the current literature on transfer matrix methods. In the present article, general expressions for various aspects of analysis-viz., natural frequency equation, modal vectors, forced response and filter performance—have been evaluated in terms of a single parameter, referred to as velocity ratio. Subprograms have been developed for use with the transfer matrix method for the evaluation of velocity ratio and related parameters. It is shown that a given system, branched or straight-through, can be completely analysed in terms of these basic subprograms, on a stored program digital computer. It is observed that the transfer matrix method with the velocity ratio approach has certain advantages over the existing general matrix methods in the analysis of one-dimensional systems.
Resumo:
In an earlier paper [1], it has been shown that velocity ratio, defined with reference to the analogous circuit, is a basic parameter in the complete analysis of a linear one-dimensional dynamical system. In this paper it is shown that the terms constituting velocity ratio can be readily determined by means of an algebraic algorithm developed from a heuristic study of the process of transfer matrix multiplication. The algorithm permits the set of most significant terms at a particular frequency of interest to be identified from a knowledge of the relative magnitudes of the impedances of the constituent elements of a proposed configuration. This feature makes the algorithm a potential tool in a first approach to a rational design of a complex dynamical filter. This algorithm is particularly suited for the desk analysis of a medium size system with lumped as well as distributed elements.
Resumo:
What can the statistical structure of natural images teach us about the human brain? Even though the visual cortex is one of the most studied parts of the brain, surprisingly little is known about how exactly images are processed to leave us with a coherent percept of the world around us, so we can recognize a friend or drive on a crowded street without any effort. By constructing probabilistic models of natural images, the goal of this thesis is to understand the structure of the stimulus that is the raison d etre for the visual system. Following the hypothesis that the optimal processing has to be matched to the structure of that stimulus, we attempt to derive computational principles, features that the visual system should compute, and properties that cells in the visual system should have. Starting from machine learning techniques such as principal component analysis and independent component analysis we construct a variety of sta- tistical models to discover structure in natural images that can be linked to receptive field properties of neurons in primary visual cortex such as simple and complex cells. We show that by representing images with phase invariant, complex cell-like units, a better statistical description of the vi- sual environment is obtained than with linear simple cell units, and that complex cell pooling can be learned by estimating both layers of a two-layer model of natural images. We investigate how a simplified model of the processing in the retina, where adaptation and contrast normalization take place, is connected to the nat- ural stimulus statistics. Analyzing the effect that retinal gain control has on later cortical processing, we propose a novel method to perform gain control in a data-driven way. Finally we show how models like those pre- sented here can be extended to capture whole visual scenes rather than just small image patches. By using a Markov random field approach we can model images of arbitrary size, while still being able to estimate the model parameters from the data.
Resumo:
Sufficient conditions for obtaining an equivalent linear model to classes of non-linear, bi-state, social interaction processes are derived. These parametric constraints, when satisfied, permit analytical determination of the dynamics of the non-linear process of social interaction.
Resumo:
Uncertainty plays an important role in water quality management problems. The major sources of uncertainty in a water quality management problem are the random nature of hydrologic variables and imprecision (fuzziness) associated with goals of the dischargers and pollution control agencies (PCA). Many Waste Load Allocation (WLA)problems are solved by considering these two sources of uncertainty. Apart from randomness and fuzziness, missing data in the time series of a hydrologic variable may result in additional uncertainty due to partial ignorance. These uncertainties render the input parameters as imprecise parameters in water quality decision making. In this paper an Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) is developed for water quality management of a river system subject to uncertainty arising from partial ignorance. In a WLA problem, both randomness and imprecision can be addressed simultaneously by fuzzy risk of low water quality. A methodology is developed for the computation of imprecise fuzzy risk of low water quality, when the parameters are characterized by uncertainty due to partial ignorance. A Monte-Carlo simulation is performed to evaluate the imprecise fuzzy risk of low water quality by considering the input variables as imprecise. Fuzzy multiobjective optimization is used to formulate the multiobjective model. The model developed is based on a fuzzy multiobjective optimization problem with max-min as the operator. This usually does not result in a unique solution but gives multiple solutions. Two optimization models are developed to capture all the decision alternatives or multiple solutions. The objective of the two optimization models is to obtain a range of fractional removal levels for the dischargers, such that the resultant fuzzy risk will be within acceptable limits. Specification of a range for fractional removal levels enhances flexibility in decision making. The methodology is demonstrated with a case study of the Tunga-Bhadra river system in India.
Resumo:
The theoretical analysis, based on the perturbation technique, of ion-acoustic waves in the vicinity of a Korteweg-de Vries (K-dV) equation derived in a plasma with some negative ions has been made. The investigation shows that the negative ions in plasma with isothermal electrons introduced a critical concentration at which the ion-acoustic wave plays an important role of wave-breaking and forming a precursor while the plasma with non-isothermal electrons has no such singular behaviour of the wave. These two distinct features of ion waves lead to an overall different approach of present study of ion-waves. A distinct feature of non-uniform transition from the nonisothermal case to isothermal case has been shown. Few particular plasma models have been chosen to show the characteristics behaviour of the ion-waves existing in different cases
Resumo:
An error-free computational approach is employed for finding the integer solution to a system of linear equations, using finite-field arithmetic. This approach is also extended to find the optimum solution for linear inequalities such as those arising in interval linear programming probloms.
Application of Laplace transform technique to the solution of certain third-order non-linear systems
Resumo:
A number of papers have appeared on the application of operational methods and in particular the Laplace transform to problems concerning non-linear systems of one kind or other. This, however, has met with only partial success in solving a class of non-linear problems as each approach has some limitations and drawbacks. In this study the approach of Baycura has been extended to certain third-order non-linear systems subjected to non-periodic excitations, as this approximate method combines the advantages of engineering accuracy with ease of application to such problems. Under non-periodic excitations the method provides a procedure for estimating quickly the maximum response amplitude, which is important from the point of view of a designer. Limitations of such a procedure are brought out and the method is illustrated by an example taken from a physical situation.
Resumo:
A new procedure for reducing trajectory sensitivity for the optimal linear regulator is described. The design is achieved without increase in the order of optimization and without the feedback of trajectory sensitivity. The procedure is also used in the input signal design problem for linear system identification by interpreting it as increasing trajectory sensitivity with respect to parameters to be estimated.
Resumo:
Hospitals are critical elements of health care systems and analysing their capacity to do work is a very important topic. To perform a system wide analysis of public hospital resources and capacity, a multi-objective optimization (MOO) approach has been proposed. This approach identifies the theoretical capacity of the entire hospital and facilitates a sensitivity analysis, for example of the patient case mix. It is necessary because the competition for hospital resources, for example between different entities, is highly influential on what work can be done. The MOO approach has been extensively tested on a real life case study and significant worth is shown. In this MOO approach, the epsilon constraint method has been utilized. However, for solving real life applications, with a large number of competing objectives, it was necessary to devise new and improved algorithms. In addition, to identify the best solution, a separable programming approach was developed. Multiple optimal solutions are also obtained via the iterative refinement and re-solution of the model.
Resumo:
This paper deals with the interpretation of the discrete-time optimal control problem as a scattering process in a discrete medium. We treat the discrete optimal linear regulator, constrained end-point and servo and tracking problems, providing a unified approach to these problems. This approach results in an easy derivation of the desired results as well as several new ones.
Resumo:
In this paper, non-linear programming techniques are applied to the problem of controlling the vibration pattern of a stretched string. First, the problem of finding the magnitudes of two control forces applied at two points l1 and l2 on the string to reduce the energy of vibration over the interval (l1, l2) relative to the energy outside the interval (l1, l2) is considered. For this problem the relative merits of various methods of non-linear programming are compared. The more complicated problem of finding the positions and magnitudes of two control forces to obtain the desired energy pattern is then solved by using the slack unconstrained minimization technique with the Fletcher-Powell search. In the discussion of the results it is shown that the position of the control force is very important in controlling the energy pattern of the string.
Resumo:
Rate-constrained power minimization (PMIN) over a code division multiple-access (CDMA) channel with correlated noise is studied. PMIN is. shown to be an instance of a separable convex optimization problem subject to linear ascending constraints. PMIN is further reduced to a dual problem of sum-rate maximization (RMAX). The results highlight the underlying unity between PMIN, RMAX, and a problem closely related to PMIN but with linear receiver constraints. Subsequently, conceptually simple sequence design algorithms are proposed to explicitly identify an assignment of sequences and powers that solve PMIN. The algorithms yield an upper bound of 2N - 1 on the number of distinct sequences where N is the processing gain. The sequences generated using the proposed algorithms are in general real-valued. If a rate-splitting and multi-dimensional CDMA approach is allowed, the upper bound reduces to N distinct sequences, in which case the sequences can form an orthogonal set and be binary +/- 1-valued.