927 resultados para Limit theorems
Resumo:
Theoretical models for the thermal response of vertical geothermal boreholes often assume that the characteristic time of variation of the heat injection rate is much larger than the characteristic diffusion time across the borehole. In this case, heat transfer inside the borehole and in its immediate surroundings is quasi-steady in the first approximation, while unsteady effects enter only in the far field. Previous studies have exploited this disparity of time scales, incorporating approximate matching conditions to couple the near-borehole region with the outer unsteady temperatura field. In the present work matched asymptotic expansion techniques are used to analyze the heat transfer problem, delivering a rigorous derivation of the true matching condition between the two regions and of the correct definition of the network of thermal resistances that represents the quasi-steady solution near the borehole. Additionally, an apparent temperature due to the unsteady far field is identified that needs to be taken into account by the near-borehole region for the correct computation of the heat injection rate. This temperature differs from the usual mean borehole temperature employed in the literatura.
Resumo:
The fixed point implementation of IIR digital filters usually leads to the appearance of zero-input limit cycles, which degrade the performance of the system. In this paper, we develop an efficient Monte Carlo algorithm to detect and characterize limit cycles in fixed-point IIR digital filters. The proposed approach considers filters formulated in the state space and is valid for any fixed point representation and quantization function. Numerical simulations on several high-order filters, where an exhaustive search is unfeasible, show the effectiveness of the proposed approach.
Resumo:
Este trabajo analiza distintas inestabilidades en estructuras formadas por distintos materiales. En particular, se capturan y se modelan las inestabilidades usando el método de Riks. Inicialmente, se analiza la bifurcación en depósitos cilíndricos formados por material anisótropo sometidos a carga axial y presión interna. El análisis de bifurcación y post-bifurcación asociados con cilindros de pared gruesa se formula para un material incompresible reforzado con dos fibras que son mecánicamente equivalentes y están dispuestas simétricamente. Consideramos dos casos en la naturaleza de la anisotropía: (i) Fibras refuerzo que tienen una influencia particular sobre la respuesta a cortante del material y (ii) Fibras refuerzo que influyen sólo si la fibra cambia de longitud con la deformación. Se analiza la propagación de las inestabilidades. En concreto, se diferencia en el abultamiento (bulging) entre la propagación axial y la propagación radial de la inestabilidad. Distintos modelos sufren una u otra propagación. Por último, distintas inestabilidades asociadas al mecanismo de ablandamiento del material (material softening) en contraposición al de endurecimiento (hardening) en una estructura (viga) de a: hormigón y b: hormigón reforzado son modeladas utilizando una metodología paralela a la desarrollada en el análisis de inestabilidades en tubos sometidos a presión interna. This present work deals with the instability of structures made of various materials. It captures and models different types of instabilities using numerical analysis. Firstly, we consider bifurcation for anisotropic cylindrical shells subject to axial loading and internal pressure. Analysis of bifurcation and post bifurcation of inflated hyperelastic thick-walled cylinder is formulated using a numerical procedure based on the modified Riks method for an incompressible material with two preferred directions which are mechanically equivalent and are symmetrically disposed. Secondly, bulging/necking motion in doubly fiber-reinforced incompressible nonlinearly elastic cylindrical shells is captured and we consider two cases for the nature of the anisotropy: (i) reinforcing models that have a particular influence on the shear response of the material and (ii) reinforcing models that depend only on the stretch in the fiber direction. The different instability motions are considered. Axial propagation of the bulging instability mode in thin-walled cylinders under inflation is analyzed. We present the analytical solution for this particular motion as well as for radial expansion during bulging evolution. For illustration, cylinders that are made of either isotropic incompressible non-linearly elastic materials or doubly fiber reinforced incompressible non-linearly elastic materials are considered. Finally, strain-softening constitutive models are considered to analyze two concrete structures: a reinforced concrete beam and an unreinforced notch beam. The bifurcation point is captured using the Riks method used previously to analyze bifurcation of a pressurized cylinder.
Resumo:
An experimental apparatus to study the breaking process of axisymmetric liquid bridges has been developed, and the breaking sequences of a large number of liquid bridge configurations at minimum-volume stability limit have been analyzed. Experimental results show that very close to the breaking moment the neck radius of the liquid bridge varies as t1/3, where t is the time to breakage, irrespective of the value of the distance between the solid disks that support the liquid column.
Resumo:
A proposal for an extended formulation of the power coefficient of a wind turbine is presented. This new formulation is a generalization of the Betz–Lanchester expression for the power coefficient as function of the axial deceleration of the wind speed provoked by the wind turbine in operation. The extended power coefficient takes into account the benefits of the power produced and the cost associated to the production of this energy. By the simple model proposed is evidenced that the purely energetic optimum operation condition giving rise to the Betz–Lanchester limit (maximum energy produced) does not coincide with the global optimum operational condition (maximum benefit generated) if cost of energy and degradation of the wind turbine during operation is considered. The new extended power coefficient is a general parameter useful to define global optimum operation conditions for wind turbines, considering not only the energy production but also the maintenance cost and the economic cost associated to the life reduction of the machine.
Resumo:
Restenosis continues to be a major problem limiting the effectiveness of revascularization procedures. To date, the roles of heterotrimeric G proteins in the triggering of pathological vascular smooth muscle (VSM) cell proliferation have not been elucidated. βγ subunits of heterotrimeric G proteins (Gβγ) are known to activate mitogen-activated protein (MAP) kinases after stimulation of certain G protein-coupled receptors; however, their relevance in VSM mitogenesis in vitro or in vivo is not known. Using adenoviral-mediated transfer of a transgene encoding a peptide inhibitor of Gβγ signaling (βARKct), we evaluated the role of Gβγ in MAP kinase activation and proliferation in response to several mitogens, including serum, in cultured rat VSM cells. Our results include the striking finding that serum-induced proliferation of VSM cells in vitro is mediated largely via Gβγ. Furthermore, we studied the effects of in vivo adenoviral-mediated βARKct gene transfer on VSM intimal hyperplasia in a rat carotid artery restenosis model. Our in vivo results demonstrated that the presence of the βARKct in injured rat carotid arteries significantly reduced VSM intimal hyperplasia by 70%. Thus, Gβγ plays a critical role in physiological VSM proliferation, and targeted Gβγ inhibition represents a novel approach for the treatment of pathological conditions such as restenosis.
Resumo:
The last few years have witnessed a significant decrease in the gap between the Shannon channel capacity limit and what is practically achievable. Progress has resulted from novel extensions of previously known coding techniques involving interleaved concatenated codes. A considerable body of simulation results is now available, supported by an important but limited theoretical basis. This paper presents a computational technique which further ties simulation results to the known theory and reveals a considerable reduction in the complexity required to approach the Shannon limit.
Resumo:
Formulas are derived for the effect of size on a free-swimming microbe’s ability to follow chemical, light, or temperature stimuli or to disperse in random directions. The four main assumptions are as follows: (i) the organisms can be modeled as spheres, (ii) the power available to the organism for swimming is proportional to its volume, (iii) the noise in measuring a signal limits determination of the direction of a stimulus, and (iv) the time available to determine stimulus direction or to swim a straight path is limited by rotational diffusion caused by Brownian motion. In all cases, it is found that there is a sharp size limit below which locomotion has no apparent benefit. This size limit is estimated to most probably be about 0.6 μm diameter and is relatively insensitive to assumed values of the other parameters. A review of existing descriptions of free-floating bacteria reveals that the smallest of 97 motile genera has a mean length of 0.8 μm, whereas 18 of 94 nonmotile genera are smaller. Similar calculations have led to the conclusion that a minimum size also exists for use of pheromones in mate location, although this size limit is about three orders of magnitude larger. In both cases, the application of well-established physical laws and biological generalities has demonstrated that a common feature of animal behavior is of no use to small free-swimming organisms.
Resumo:
The single gene encoding limit dextrinase (pullulan 6-glucanohydrolase; EC 3.2.1.41) in barley (Hordeum vulgare) has 26 introns that range in size from 93 to 822 base pairs. The mature polypeptide encoded by the gene has 884 amino acid residues and a calculated molecular mass of 97,417 D. Limit dextrinase mRNA is abundant in gibberellic acid-treated aleurone layers and in germinated grain. Gibberellic acid response elements were found in the promoter region of the gene. These observations suggest that the enzyme participates in starch hydrolysis during endosperm mobilization in germinated grain. The mRNA encoding the enzyme is present at lower levels in the developing endosperm of immature grain, a location consistent with a role for limit dextrinase in starch synthesis. Enzyme activity was also detected in developing grain. The limit dextrinase has a presequence typical of transit peptides that target nascent polypeptides to amyloplasts, but this would not be expected to direct secretion of the mature enzyme from aleurone cells in germinated grain. It remains to be discovered how the enzyme is released from the aleurone and whether another enzyme, possibly of the isoamylase group, might be equally important for starch hydrolysis in germinated grain.
Resumo:
Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-d-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.
Resumo:
The rate of growth of world food demand will be much slower for 1990–2010 than it was for the prior three decades. The major factor determining the increase in food demand is population growth. Income growth has a much smaller effect. From 1960 to 1990, population growth accounted for approximately three fourths of the growth in demand or use of grain. For 1990–2010, it is anticipated that population growth will account for nearly all of the increase in world demand for grain. The rate of population growth from 1990 to 2020 is projected to be at an annual rate of 1.3% compared with 1.9% for 1960 to 1990—a decline of more than 30%. World per capita use of grain will increase very little—perhaps by 4%. The increase in grain use is projected to be 40% less than in 1960–1990. It is anticipated that real grain prices will decline during the period, although not nearly as much as the 40% decline in the previous three decades. Concern has been expressed concerning the deterioration of the quality and productivity of the world’s farmland. A study for China and Indonesia indicates that there has been no significant change in the productive capacity of the land over the past 50 years. Contrary to numerous claims, the depth of the topsoil has not changed, indicating that erosion has had little or no impact.