994 resultados para Leptons (Nuclear physics)
Resumo:
The gravitational properties of a straight cosmic string are studied in the linear approximation of higher-derivative gravity. These properties are shown to be very different from those found using linearized Einstein gravity: there exists a short range gravitational (anti-gravitational) force in the nonrelativistic limit; in addition, the derection angle of a light ray moving in a plane orthogonal to the string depends on the impact parameter.
Resumo:
The Bullough-Dodd model is an important two-dimensional integrable field theory which finds applications in physics and geometry. We consider a conformally invariant extension of it, and study its integrability properties using a zero curvature condition based on the twisted Kac-Moody algebra A(2)((2)). The one- and two-soliton solutions as well as the breathers are constructed explicitly. We also consider integrable extensions of the Bullough-Dodd model by the introduction of spinor (matter) fields. The resulting theories are conformally invariant and present local internal symmetries. All the one-soliton solutions, for two examples of those models, are constructed using a hybrid of the dressing and Hirota methods. One model is of particular interest because it presents a confinement mechanism for a given conserved charge inside the solitons. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Recent investigations of various quantum-gravity theories have revealed a variety of possible mechanisms that lead to Lorentz violation. One of the more elegant of these mechanisms is known as Spontaneous Lorentz Symmetry Breaking (SLSB), where a vector or tensor field acquires a nonzero vacuum expectation value. As a consequence of this symmetry breaking, massless Nambu-Goldstone modes appear with properties similar to the photon in Electromagnetism. This thesis considers the most general class of vector field theories that exhibit spontaneous Lorentz violation-known as bumblebee models-and examines their candidacy as potential alternative explanations of E&M, offering the possibility that Einstein-Maxwell theory could emerge as a result of SLSB rather than of local U(1) gauge invariance. With this aim we employ Dirac's Hamiltonian Constraint Analysis procedure to examine the constraint structures and degrees of freedom inherent in three candidate bumblebee models, each with a different potential function, and compare these results to those of Electromagnetism. We find that none of these models share similar constraint structures to that of E&M, and that the number of degrees of freedom for each model exceeds that of Electromagnetism by at least two, pointing to the potential existence of massive modes or propagating ghost modes in the bumblebee theories.
Resumo:
Neutron activation analysis and gamma-ray spectroscopy were used to determine the quantity of potassium and sodium in an ash sample of Tabebuia sp bombarded with thermal neutrons. These techniques, widely applied in nuclear physics, can be used in the context of wood science as an alternative for the usual physical chemistry methods applied in this area. The quantity of K and Na in an 8.60 +/- 0.10 mg of ash was determined as being 1.3 +/- 0.3 mg and 11.0 +/- 1.8 mu g, respectively. The ratio of Tabebuia sp converted into ash was also determined as 0.758 +/- 0.004%.
Resumo:
We review the scaling properties of few-body observables near the critical conditions for binding, with particular attention to light exotic nuclei, molecules and ultracold atoms.
Resumo:
Using a peculiar version of the SU(3)(L) circle times U(1)(N) electroweak model, we investigate the production of doubly charged Higgs boson at the Large Hadron Collider. Our results include branching ratio calculations for the doubly charged Higgs and for one of the neutral scalar bosons of the model. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The problem of a fermion subject to a general mixing of vector and scalar screened Coulomb potentials in a two-dimensional world is analyzed and quantization conditions are found.
Resumo:
The problem of fermions in the presence of a pseudoscalar plus a mixing of vector and scalar potentials which have equal or opposite signs is investigated. We explore all the possible signs of the potentials and discuss their bound-state solutions for fermions and antifermions. The cases of mixed vector and scalar Poschl-Teller-like and pseudoscalar kink-like potentials, already analyzed in previous works, are obtained as particular cases.
Resumo:
The Dirac equation is analyzed for nonconserving-parity pseudoscalar radial potentials in 3+1 dimensions. It is shown that despite the nonconservation of parity this general problem can be reduced to a Sturm-Liouville problem of nonrelativistic fermions in spherically symmetric effective potentials. The searching for bounded solutions is done for the power-law and Yukawa potentials. The use of the methodology of effective potentials allow us to conclude that the existence of bound-state solutions depends whether the potential leads to a definite effective potential-well structure or to an effective potential less singular than -1/4r(2).
Resumo:
Exact bounded solutions for a fermion subject to exponential scalar potential in 1 + 1 dimensions are found in closed form. We discuss the existence of zero modes which are related to the ultrarelativistic limit of the Dirac equation and are responsible for the induction of a fractional fermion number on the vacuum.
Resumo:
The problem of a fermion subject to a a scalar inversely linear potential in a two-dimensional world is mapped into a Sturm-Liouville problem for nonzero eigenenergies. This mapping gives rise to an effective Kratzer potential and exact bounded solutions are found in closed form. The normalizable zero-eigenmode solution is also found. A few unusual results are revealed.
Resumo:
We analyze the low energy features of a supersymmetric standard model where the anomaly-induced contributions to the soft parameters are dominant in a scenario with bilinear R-parity violation. This class of models leads to mixings between the standard model particles and supersymmetric ones which chance the low energy phenomenology and searches for supersymmetry. In addition, R-parity violation interactions give rise to small neutrino masses which we show to be consistent with the present observations. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The Duffin-Kemmer-Petiau (DKP) equation for massive spinless bosons in the presence of a nonminimal vector smooth step potential is revised. The problem is mapped into a Sturm-Lionville equation. The reflection and transmission coefficients are obtained and discussed in detail. Furthermore; we show that Klein's paradox does not show its face in this sort of interaction.
Resumo:
The Duffin-Kemmer-Petiau (DKP) equation, in the scalar sector of the theory and with a linear nominimal vector potential, is mapped into the nonrelativistic harmonic oscillator problem. The behavior of the solutions for this sort of vector DKP oscillator is discussed in detail.