996 resultados para Lenclos, Ninon de, 1620-1705
Resumo:
To optimize the performance of wireless networks, one needs to consider the impact of key factors such as interference from hidden nodes, the capture effect, the network density and network conditions (saturated versus non-saturated). In this research, our goal is to quantify the impact of these factors and to propose effective mechanisms and algorithms for throughput guarantees in multi-hop wireless networks. For this purpose, we have developed a model that takes into account all these key factors, based on which an admission control algorithm and an end-to-end available bandwidth estimation algorithm are proposed. Given the necessary network information and traffic demands as inputs, these algorithms are able to provide predictive control via an iterative approach. Evaluations using analytical comparison with simulations as well as existing research show that the proposed model and algorithms are accurate and effective.
Resumo:
BACKGROUND: We examined the effects of leaving public sector general practitioner (GP) work and of taking a GP position on changes in work-related psychosocial factors, such as time pressure, patient-related stress, distress and work interference with family. In addition, we examined whether changes in time pressure and patient-related stress mediated the association of employment change with changes of distress and work interference with family. METHODS: Participants were 1705 Finnish physicians (60% women) who responded to surveys in 2006 and 2010. Analyses of covariance were conducted to examine the effect of employment change to outcome changes adjusted for gender, age and response format. Mediational effects were tested following the procedures outlined by Baron and Kenny. RESULTS: Employment change was significantly associated with all the outcomes. Leaving public sector GP work was associated with substantially decreased time pressure, patient-related stress, distress and work interference with family. In contrast, taking a position as a public sector GP was associated with an increase in these factors. Mediation tests suggested that the associations of employment change with distress change and work interference with family change were partially explained by the changes in time pressure and patient-related stress. CONCLUSIONS: Our results showed that leaving public sector GP work is associated with favourable outcomes, whereas taking a GP position in the public sector is associated with adverse effects. Primary health-care organizations should pay more attention to the working conditions of their GPs, in particular, to time pressure and patient-related stress.
Resumo:
A cyberwar exists between malware writers and antimalware researchers. At this war's heart rages a weapons race that originated in the 80s with the first computer virus. Obfuscation is one of the latest strategies to camouflage the telltale signs of malware, undermine antimalware software, and thwart malware analysis. Malware writers use packers, polymorphic techniques, and metamorphic techniques to evade intrusion detection systems. The need exists for new antimalware approaches that focus on what malware is doing rather than how it's doing it.
Resumo:
Autonomic management can be used to improve the QoS provided by parallel/distributed applications. We discuss behavioural skeletons introduced in earlier work: rather than relying on programmer ability to design “from scratch” efficient autonomic policies, we encapsulate general autonomic controller features into algorithmic skeletons. Then we leave to the programmer the duty of specifying the parameters needed to specialise the skeletons to the needs of the particular application at hand. This results in the programmer having the ability to fast prototype and tune distributed/parallel applications with non-trivial autonomic management capabilities. We discuss how behavioural skeletons have been implemented in the framework of GCM(the Grid ComponentModel developed within the CoreGRID NoE and currently being implemented within the GridCOMP STREP project). We present results evaluating the overhead introduced by autonomic management activities as well as the overall behaviour of the skeletons. We also present results achieved with a long running application subject to autonomic management and dynamically adapting to changing features of the target architecture.
Overall the results demonstrate both the feasibility of implementing autonomic control via behavioural skeletons and the effectiveness of our sample behavioural skeletons in managing the “functional replication” pattern(s).
Resumo:
Mixture of Gaussians (MoG) modelling [13] is a popular approach to background subtraction in video sequences. Although the algorithm shows good empirical performance, it lacks theoretical justification. In this paper, we give a justification for it from an online stochastic expectation maximization (EM) viewpoint and extend it to a general framework of regularized online classification EM for MoG with guaranteed convergence. By choosing a special regularization function, l1 norm, we derived a new set of updating equations for l1 regularized online MoG. It is shown empirically that l1 regularized online MoG converge faster than the original online MoG .
Resumo:
Introducing automation into a managed environment includes significant initial overhead and abstraction, creating a disconnect between the administrator and the system. In order to facilitate the transition to automated management, this paper proposes an approach whereby automation increases gradually, gathering data from the task deployment process. This stored data is analysed to determine the task outcome status and can then be used for comparison against future deployments of the same task and alerting the administrator to deviations from the expected outcome. Using a machinelearning
approach, the automation tool can learn from the administrator's reaction to task failures and eventually react to faults autonomously.
Resumo:
This paper presents a novel method of audio-visual feature-level fusion for person identification where both the speech and facial modalities may be corrupted, and there is a lack of prior knowledge about the corruption. Furthermore, we assume there are limited amount of training data for each modality (e.g., a short training speech segment and a single training facial image for each person). A new multimodal feature representation and a modified cosine similarity are introduced to combine and compare bimodal features with limited training data, as well as vastly differing data rates and feature sizes. Optimal feature selection and multicondition training are used to reduce the mismatch between training and testing, thereby making the system robust to unknown bimodal corruption. Experiments have been carried out on a bimodal dataset created from the SPIDRE speaker recognition database and AR face recognition database with variable noise corruption of speech and occlusion in the face images. The system's speaker identification performance on the SPIDRE database, and facial identification performance on the AR database, is comparable with the literature. Combining both modalities using the new method of multimodal fusion leads to significantly improved accuracy over the unimodal systems, even when both modalities have been corrupted. The new method also shows improved identification accuracy compared with the bimodal systems based on multicondition model training or missing-feature decoding alone.