848 resultados para Latex-based Portland cement system
Resumo:
In establishing the reliability of performance-related design methods for concrete – which are relevant for resistance against chloride-induced corrosion - long-term experience of local materials and practices and detailed knowledge of the ambient and local micro-climate are critical. Furthermore, in the development of analytical models for performance-based design, calibration against test data representative of actual conditions in practice is required. To this end, the current study presents results from full-scale, concrete pier-stems under long-term exposure to a marine environment with work focussing on XS2 (below mid-tide level) in which the concrete is regarded as fully saturated and XS3 (tidal, splash and spray) in which the concrete is in an unsaturated condition. These exposures represent zones where concrete structures are most susceptible to ionic ingress and deterioration. Chloride profiles and chloride transport behaviour are studied using both an empirical model (erfc function) and a physical model (ClinConc). The time dependency of surface chloride concentration (Cs) and apparent diffusivity (Da) were established for the empirical model whereas, in the ClinConc model (originally based on saturated concrete), two new environmental factors were introduced for the XS3 environmental exposure zone. Although the XS3 is considered as one environmental exposure zone according to BS EN 206-1:2013, the work has highlighted that even within this zone, significant changes in chloride ingress are evident. This study aims to update the parameters of both models for predicting the long term transport behaviour of concrete subjected to environmental exposure classes XS2 and XS3.
Resumo:
In the near future, geopolymers or alkali-activated cementitious materials will be used as new high-performance construction materials of low environmental impact with a reasonable cost. This material is a good candidate to partially replace ordinary portland cement (OPC) in concrete as a major construction material that plays an outstanding role in the construction industry of different structures. Geopolymer materials are inorganic polymers based on alumina and silica units; they are synthesized from a wide range of dehydroxylated alumina-silicate powders condensed with alkaline silicate in a highly alkaline environment. Geopolymeric materials can be produced from a wide range of alumina-silica, including natural products--such as natural pozzolan and metakaolin--or coproducts--such as fly ash (coal and lignite), oil fuel ash, blast furnace or steel slag, and silica fume--and provide a route toward sustainable development. Using lesser amounts of calcium-based raw materials, lower manufacturing temperature, and lower amounts of fuel result in reduced carbon emissions for geopolymer cement manufacture up to 22 to 72% in comparison with portland cement. A study has been done by the authors to investigate the intrinsic nature of different types of Iranian natural pozzolans to determine the activators and methods that could be used to produce a geopolymer concrete based on alkali-activated natural pozzolan (AANP) and optimize mixture design. The mechanical behavior and durability of these types of geopolymer concrete were investigated and compared with normal OPC concrete mixtures cast by the authors and also reported in the literature. This paper summarizes the main conclusions of the research regarding pozzolanic activity, activator properties, engineering and durability properties, applications and evaluation of carbon footprint, and cost for AANP concrete.
Resumo:
The major objective of this research project is to investigate how fly ash influences the chemical durability of portland cement based materials. The testing program is evaluating how Iowa fly ashes influence the sulfate durability of portland cement-fly ash pastes, mortars, and concretes. Also, alkali-reactivity studies are being conducted on mortar bar specimens prepared in accordance with ASTM C 311. Prelimary sulfate test results, based only on mortar bar studies, indicate that only the very high-calcium fly ash (29 percent CaO, by weight) consistently reduced the durability of test specimens exposed to a solution containing 5 percent sodium sulfate. The remaining four fly ashes that were used in the study showed negligible to dramatic increases in sulfate resistance. Concrete specimens were only beginning to respond to the sulfate solutions after about one year of exposure; and hence, considerably more time will be needed to assess their performance. Preliminary results from the alkali-reactivity tests have indicated that the Oreopolis aggregate is not sensitive to alkali attack. However, some of the test results have indicated that the testing procedure may be prone to delayed expansion due to the presence of periclase (MgO) in the Class C fly ashes. Research is being planned to: (1) verify if the periclase is influencing test results; and (2) estimating the magnitude of the potential error.
Resumo:
Internal curing is a relatively new technique being used to promote hydration of Portland cement concretes. The fundamental concept is to provide reservoirs of water within the matrix such that the water does not increase the initial water/cementitious materials ratio to the mixture, but is available to help continue hydration once the system starts to dry out. The reservoirs used in the US are typically in the form of lightweight fine aggregate (LWFA) that is saturated prior to batching. Considerable work has been conducted both in the laboratory and in the field to confirm that this approach is fundamentally sound and yet practical for construction purposes. A number of bridge decks have been successfully constructed around the US, including one in Iowa in 2013. It is reported that inclusion of about 20% to 30% LWFA will not only improve strength development and potential durability, but, more importantly, will significantly reduce shrinking, thus reducing cracking risk. The aim of this work was to investigate the feasibility of such an approach in a bridge deck.
Resumo:
The following report summarizes research activities conducted on Iowa Department of Transportation Project HR-327, for the period April 1, 1990 through March 31, 1991. The purpose of this research project is to investigate how fly ash influences the chemical durability of portland cement based materials. The goal of this research is to utilize the empirical information obtained from laboratory testing to better estimate the durability of portland cement concrete pavements (with and without fly ash) subjected to chemical attack via the natural environment or the application of deicing salts. This project is being jointly sponsored by the Iowa Department of Transportation and the Iowa Fly Ash Affiliate Research group. The research work is also being cooperatively conducted by Iowa State University and Iowa Department of Transportation research personnel. Researchers at Iowa State University are conducting the paste and mortar studies while Iowa Department of Transportation researchers are conducting the concrete study.
Resumo:
Despite its huge potential in risk analysis, the Dempster–Shafer Theory of Evidence (DST) has not received enough attention in construction management. This paper presents a DST-based approach for structuring personal experience and professional judgment when assessing construction project risk. DST was innovatively used to tackle the problem of lacking sufficient information through enabling analysts to provide incomplete assessments. Risk cost is used as a common scale for measuring risk impact on the various project objectives, and the Evidential Reasoning algorithm is suggested as a novel alternative for aggregating individual assessments. A spreadsheet-based decision support system (DSS) was devised to facilitate the proposed approach. Four case studies were conducted to examine the approach's viability. Senior managers in four British construction companies tried the DSS and gave very promising feedback. The paper concludes that the proposed methodology may contribute to bridging the gap between theory and practice of construction risk assessment.
Resumo:
Portland cement concrete (PCC) pavement undergoes repeated environmental load-related deflection resulting from temperature and moisture variations across the pavement depth. This phenomenon, referred to as PCC pavement curling and warping, has been known and studied since the mid-1920s. Slab curvature can be further magnified under repeated traffic loads and may ultimately lead to fatigue failures, including top-down and bottom-up transverse, longitudinal, and corner cracking. It is therefore important to measure the “true” degree of curling and warping in PCC pavements, not only for quality control (QC) and quality assurance (QA) purposes, but also to achieve a better understanding of its relationship to long-term pavement performance. In order to better understand the curling and warping behavior of PCC pavements in Iowa and provide recommendations to mitigate curling and warping deflections, field investigations were performed at six existing sites during the late fall of 2015. These sites included PCC pavements with various ages, slab shapes, mix design aspects, and environmental conditions during construction. A stationary light detection and ranging (LiDAR) device was used to scan the slab surfaces. The degree of curling and warping along the longitudinal, transverse, and diagonal directions was calculated for the selected slabs based on the point clouds acquired using LiDAR. The results and findings are correlated to variations in pavement performance, mix design, pavement design, and construction details at each site. Recommendations regarding how to minimize curling and warping are provided based on a literature review and this field study. Some examples of using point cloud data to build three-dimensional (3D) models of the overall curvature of the slab shape are presented to show the feasibility of using this 3D analysis method for curling and warping analysis.
Resumo:
Abstract : The structural build-up of fresh cement-based materials has a great impact on their structural performance after casting. Accordingly, the mixture design should be tailored to adapt the kinetics of build-up given the application on hand. The rate of structural build-up of cement-based suspensions at rest is a complex phenomenon affected by both physical and chemical structuration processes. The structuration kinetics are strongly dependent on the mixture’s composition, testing parameters, as well as the shear history. Accurate measurements of build-up rely on the efficiency of the applied pre-shear regime to achieve an initial well-dispersed state as well as the applied stress during the liquid-solid transition. Studying the physical and chemical mechanisms of build-up of cement suspensions at rest can enhance the fundamental understanding of this phenomenon. This can, therefore, allow a better control of the rheological and time-dependent properties of cement-based materials. The research focused on the use of dynamic rheology in investigating the kinetics of structural build-up of fresh cement pastes. The research program was conducted in three different phases. The first phase was devoted to evaluating the dispersing efficiency of various disruptive shear techniques. The investigated shearing profiles included rotational, oscillatory, and combination of both. The initial and final states of suspension’s structure, before and after disruption, were determined by applying a small-amplitude oscillatory shear (SAOS). The difference between the viscoelastic values before and after disruption was used to express the degree of dispersion. An efficient technique to disperse concentrated cement suspensions was developed. The second phase aimed to establish a rheometric approach to dissociate and monitor the individual physical and chemical mechanisms of build-up of cement paste. In this regard, the non-destructive dynamic rheometry was used to investigate the evolutions of both storage modulus and phase angle of inert calcium carbonate and cement suspensions. Two independent build-up indices were proposed. The structural build-up of various cement suspensions made with different cement contents, silica fume replacement percentages, and high-range water reducer dosages was evaluated using the proposed indices. These indices were then compared to the well-known thixotropic index (Athix.). Furthermore, the proposed indices were correlated to the decay in lateral pressure determined for various cement pastes cast in a pressure column. The proposed pre-shearing protocol and build-up indices (phases 1 and 2) were then used to investigate the effect of mixture’s parameters on the kinetics of structural build-up in phase 3. The investigated mixture’s parameters included cement content and fineness, alkali sulfate content, and temperature of cement suspension. Zeta potential, calorimetric, spectrometric measurements were performed to explore the corresponding microstructural changes in cement suspensions, such as inter-particle cohesion, rate of Brownian flocculation, and nucleation rate. A model linking the build-up indices and the microstructural characteristics was developed to predict the build-up behaviour of cement-based suspensions The obtained results showed that oscillatory shear may have a greater effect on dispersing concentrated cement suspension than the rotational shear. Furthermore, the increase in induced shear strain was found to enhance the breakdown of suspension’s structure until a critical point, after which thickening effects dominate. An effective dispersing method is then proposed. This consists of applying a rotational shear around the transitional value between the linear and non-linear variations of the apparent viscosity with shear rate, followed by an oscillatory shear at the crossover shear strain and high angular frequency of 100 rad/s. Investigating the evolutions of viscoelastic properties of inert calcite-based and cement suspensions and allowed establishing two independent build-up indices. The first one (the percolation time) can represent the rest time needed to form the elastic network. On the other hand, the second one (rigidification rate) can describe the increase in stress-bearing capacity of formed network due to cement hydration. In addition, results showed that combining the percolation time and the rigidification rate can provide deeper insight into the structuration process of cement suspensions. Furthermore, these indices were found to be well-correlated to the decay in the lateral pressure of cement suspensions. The variations of proposed build-up indices with mixture’s parameters showed that the percolation time is most likely controlled by the frequency of Brownian collisions, distance between dispersed particles, and intensity of cohesion between cement particles. On the other hand, a higher rigidification rate can be secured by increasing the number of contact points per unit volume of paste, nucleation rate of cement hydrates, and intensity of inter-particle cohesion.
Resumo:
Image processing offers unparalleled potential for traffic monitoring and control. For many years engineers have attempted to perfect the art of automatic data abstraction from sequences of video images. This paper outlines a research project undertaken at Napier University by the authors in the field of image processing for automatic traffic analysis. A software based system implementing TRIP algorithms to count cars and measure vehicle speed has been developed by members of the Transport Engineering Research Unit (TERU) at the University. The TRIP algorithm has been ported and evaluated on an IBM PC platform with a view to hardware implementation of the pre-processing routines required for vehicle detection. Results show that a software based traffic counting system is realisable for single window processing. Due to the high volume of data required to be processed for full frames or multiple lanes, system operations in real time are limited. Therefore specific hardware is required to be designed. The paper outlines a hardware design for implementation of inter-frame and background differencing, background updating and shadow removal techniques. Preliminary results showing the processing time and counting accuracy for the routines implemented in software are presented and a real time hardware pre-processing architecture is described.
Resumo:
The frugivorous “true” fruit fly, Bactrocera tryoni (Queensland fruit fly), is presumed to have a nonresourced-based lek mating system. This is largely untested, and contrary data exists to suggest Bactrocera tryoni may have a resource-based mating system focused on fruiting host plants. We tested the mating system of Bactrocera tryoni, and its close sibling Bactrocera neohumeralis, in large field cages using laboratory reared flies. We used observational experiments that allowed us to determine if: (i) mating pairs were aggregated or nonaggregated; (ii) mating system was resource or nonresource based; (iii) flies utilized possible landmarks (tall trees over short) as mate-rendezvous sites; and (iv) males called females from male-dominated leks. We recorded nearly 250 Bactrocera tryoni mating pairs across all experiments, revealing that: (i) mating pairs were aggregated; (ii) mating nearly always occurred in tall trees over short; (iii) mating was nonresource based; and (iv) that males and females arrived at the mate-rendezvous site together with no evidence that males preceded females. Bactrocera neohumeralis copulations were much more infrequent (only 30 mating pairs in total), but for those pairs there was a similar preference for tall trees and no evidence of a resource-based mating system. Some aspects of Bactrocera tryoni mating behavior align with theoretical expectations of a lekking system, but others do not. Until evidence for unequivocal female choice can be provided (as predicted under a true lek), the mating system of Bactrocera tryoni is best described as a nonresource based, aggregation system for which we also have evidence that land-marking may be involved.
Resumo:
The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.
Resumo:
The structured representation of cases by attribute graphs in a Case-Based Reasoning (CBR) system for course timetabling has been the subject of previous research by the authors. In that system, the case base is organised as a decision tree and the retrieval process chooses those cases which are sub attribute graph isomorphic to the new case. The drawback of that approach is that it is not suitable for solving large problems. This paper presents a multiple-retrieval approach that partitions a large problem into small solvable sub-problems by recursively inputting the unsolved part of the graph into the decision tree for retrieval. The adaptation combines the retrieved partial solutions of all the partitioned sub-problems and employs a graph heuristic method to construct the whole solution for the new case. We present a methodology which is not dependant upon problem specific information and which, as such, represents an approach which underpins the goal of building more general timetabling systems. We also explore the question of whether this multiple-retrieval CBR could be an effective initialisation method for local search methods such as Hill Climbing, Tabu Search and Simulated Annealing. Significant results are obtained from a wide range of experiments. An evaluation of the CBR system is presented and the impact of the approach on timetabling research is discussed. We see that the approach does indeed represent an effective initialisation method for these approaches.
Resumo:
The research investigates the feasibility of using web-based project management systems for dredging. To achieve this objective the research assessed both the positive and negative aspects of using web-based technology for the management of dredging projects. Information gained from literature review and prior investigations of dredging projects revealed that project performance, social, political, technical, and business aspects of the organization were important factors in deciding to use web-based systems for the management of dredging projects. These factors were used to develop the research assumptions. An exploratory case study methodology was used to gather the empirical evidence and perform the analysis. An operational prototype of the system was developed to help evaluate developmental and functional requirements, as well as the influence on performance, and on the organization. The evidence gathered from three case study projects, and from a survey of 31 experts, were used to validate the assumptions. Baselines, representing the assumptions, were created as a reference to assess the responses and qualitative measures. The deviation of the responses was used to evaluate for the analysis. Finally, the conclusions were assessed by validating the assumptions with the evidence, derived from the analysis. The research findings are as follows: 1. The system would help improve project performance. 2. Resistance to implementation may be experienced if the system is implemented. Therefore, resistance to implementation needs to be investigated further and more R&D work is needed in order to advance to the final design and implementation. 3. System may be divided into standalone modules in order to simplify the system and facilitate incremental changes. 4. The QA/QC conceptual approach used by this research needs to be redefined during future R&D to satisfy both owners and contractors. Yin (2009) Case Study Research Design and Methods was used to develop the research approach, design, data collection, and analysis. Markus (1983) Resistance Theory was used during the assumptions definition to predict potential problems to the implementation of web-based project management systems for the dredging industry. Keen (1981) incremental changes and facilitative approach tactics were used as basis to classify solutions, and how to overcome resistance to implementation of the web-based project management system. Davis (1989) Technology Acceptance Model (TAM) was used to assess the solutions needed to overcome the resistances to the implementation of web-base management systems for dredging projects.
Resumo:
A new procedure was developed in this study, based on a system equipped with a cellulose membrane and a tetraethylenepentamine hexaacetate chelator (MD-TEPHA) for in situ characterization of the lability of metal species in aquatic systems. To this end, the DM-TEPHA system was prepared by adding TEPHA chelator to cellulose bags pre-purified with 1.0 mol L-1 of HCl and NaOH solutions. After the MD-TEPHA system was sealed, it was examined in the laboratory to evaluate the influence of complexation time (0-24 h), pH (3.0, 4.0, 5.0, 6.0 and 7.0), metal ions (Cu, Cd, Fe, Mn and Ni) and concentration of organic matter (15, 30 and 60 mg L-1) on the relative lability of metal species by TEPHA chelator. The results showed that Fe and Cu metals were complexed more slowly by TEPHA chelator in the MD-TEPHA system than were Cd, Ni and Mn in all pH used. It was also found that the pH strongly influences the process of metal complexation by the MD-TEPHA system. At all the pH levels, Cd, Mn and Ni showed greater complexation with TEPHA chelator (recovery of about 95-75%) than did Cu and Fe metals. Time also affects the lability of metal species complexed by aquatic humic substances (AHS); while Cd, Ni and Mn showed a faster kinetics, reaching equilibrium after about 100 min, and Cu and Fe approached equilibrium after 400 min. Increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time