999 resultados para Late Glacial Maximum


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A high-resolution, accelerator radiocarbon dated climate record of the interval 8,000-18,000 years B.P. from Deep Sea Drilling Project site 480 (Guaymas Basin, Gulf of California) shows geochemical and lithological oscillations of oceanographic and climatic significance during deglaciation. Nonlaminated sediments are associated with cooler climatic conditions during the late glacial (up to 13,000 years B.P.), and from 10,300 to 10,800 years B.P., equivalent to the Younger Dryas event of the North Atlantic region. We propose that the changes from laminated (varved) to nonlaminated sediments resulted from increased oxygen content in Pacific intermediate waters during the glacial and the Younger Dryas episodes, and that the forcing for the latter event was global in scope. Prominent events of low delta18O are recorded in benthic foraminifera from 8,000 to 10,000 and at 12,000 years B.P.; evidence for an earlier event between 13,500 and 15,000 years B.P. is weaker. Maximum delta18O is found to have occurred 10,500, 13,500, and 15,000 years ago (and beyond). Oxygen isotopic variability most likely reflects changing temperature and salinity characteristics of Pacific waters of intermediate depth during deglaciation or environmental changes within the Gulf of California region. Several lines of evidence suggest that during deglaciation the climate of the American southwest was marked by increased precipitation that could have lowered salinity in the Gulf of California. Recent modelling studies show that cooling of the Gulf of Mexico due to glacial meltwater injection, which is believed to have occurred at least twice during deglaciation, would have resulted in increased precipitation with respect to evaporation in the American southwest during summertime. The timing of deglacial events in the Gulf of Mexico and the Gulf of California supports such an atmospheric teleconnection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies from the subtropical western and eastern Atlantic Ocean, using the 231Pa/230Th ratio as a kinematic proxy for deep water circulation, provided compelling evidence for a strong link between climate and the rate of meridional overturning circulation (MOC) over the last deglaciation. In this study, we present a compilation of existing and new sedimentary 231Pa/230Th records from North Atlantic cores between 1710 and 4550 m water depth. Comparing sedimentary 231Pa/230Th from different depths provides new insights into the evolution of the geometry and rate of deep water formation in the North Atlantic during the last 20,000 years. The 231Pa/230Th ratio measured in upper Holocene sediments indicates slow water renewal above ?2500 m and rapid flushing below, consistent with our understanding of modern circulation. In contrast, during the Last Glacial Maximum (LGM), Glacial North Atlantic Intermediate Water (GNAIW) drove a rapid overturning circulation to a depth of at least ?3000 m depth. Below ~4000 m, water renewal was much slower than today. At the onset of Heinrich event 1, transport by the overturning circulation declined at all depths. GNAIW shoaled above 3000 m and significantly weakened but did not totally shut down. During the Bølling-Allerød (BA) that followed, water renewal rates further decreased above 2000 m but increased below. Our results suggest for the first time that ocean circulation during that period was quite distinct from the modern circulation mode, with a comparatively higher renewal rate above 3000 m and a lower renewal rate below in a pattern similar to the LGM but less accentuated. MOC during the Younger Dryas appears very similar to BA down to 2000 m and slightly slower below.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Paired radiocarbon measurements on haptophyte biomarkers (alkenones) and on co-occurring tests of planktic foraminifera (Neogloboquadrina dutertrei and Globogerinoides sacculifer) from late glacial to Holocene sediments at core locations ME0005-24JC, Y69-71P, and MC16 from the south-western and central Panama Basin indicate no significant addition of pre-aged alkenones by lateral advection. The strong temporal correspondence between alkenones, foraminifera and total organic carbon (TOC) also implies negligible contributions of aged terrigenous material. Considering controversial evidence for sediment redistribution in previous studies of these sites, our data imply that the laterally supplied material cannot stem from remobilization of substantially aged sediments. Transport, if any, requires syn-depositional nepheloid layer transport and redistribution of low-density or fine-grained components within decades of particle formation. Such rapid and local transport minimizes the potential for temporal decoupling of proxies residing in different grain-size fractions and thus facilitates comparison of various proxies for paleoceanographic reconstructions in this study area. Anomalously old foraminiferal tests from a glacial depth interval of core Y69-71P may result from episodic spillover of fast bottom currents across the Carnegie Ridge transporting foraminiferal sands towards the north.