994 resultados para LIQUID-DROP SENSOR
Resumo:
This project proposes an approach for supporting Indoor Navigation Systems using Pedestrian Dead Reckoning-based methods and by analyzing motion sensor data available in most modern smartphones. Processes suggested in this investigation are able to calculate the distance traveled by a user while he or she is walking. WLAN fingerprint- based navigation systems benefit from the processes followed in this research and results achieved to reduce its workload and improve its positioning estimations.
Resumo:
Micro/nano wrinkled patterns on cross-linked urethane/urea polymeric flexible free standing films with two soft segments, polypropylene oxide and polybutadiene, can be induced by UV-irradiation. The ability to write/erase these 3D structures, in a controlled manner, is the main focus of this work. The imprinting of the wrinkled structures was accomplished by swelling in an appropriate solvent followed by drying the membranes after the cross-linking process and UV irradiation. The surface tailoring of the elastomeric membranes was imaged by optical microscopy, scanning electronic microscopy and by atomic force microscopy. To erase the wrinkled structures the elastomers were swollen. The swelling as well as the sol/gel fraction and the UV radiation were tuned in order to control the wrinkles characteristics. It was found that the wrinkles wavelength, in the order of microns (1±0,25μm), was stamped by the UV radiation intensity and exposure time while the wrinkles' amplitude, in the order of nanometers (150-450 nm), was highly dependent on the swelling and sol/gel fraction. A prototype for volatile organic compounds detection was developed taking advantage of the unique 3D micro/nano wrinkles features.
Resumo:
Nanotechnology plays a central role in ‘tailoring’ materials’ properties and thus improving its performances for a wide range of applications. Coupling nature nano-objects with nanotechnology results in materials with enhanced functionalities. The main objective of this master thesis was the synthesis of nanocrystalline cellulose (NCCs) and its further incorporation in a cellulosic matrix, in order to produce a stimuli-responsive material to moisture. The induced behaviour (bending/unbending) of the samples was deeply investigated, in order to determine relationships between structure/properties. Using microcrystalline cellulose as a starting material, acid hydrolysis was performed and the NCC was obtained. Anisotropic aqueous solutions of HPC and NCC were prepared and films with thicknesses ranging from 22μm to 61μm were achieved, by using a shear casting technique. Microscopic and spectroscopic techniques as well as mechanical and rheological essays were used to characterize the transparent and flexible films produced. Upon the application of a stimulus (moisture), the bending/unbending response times were measured. The use of NCC allowed obtaining films with response times in the order of 6 seconds for the bending and 5 seconds for the unbending, improving the results previously reported. These promising results open new horizons for building up improved soft steam engines.
Resumo:
In the field of energy, natural gas is an essential bridge to a clean, low carbon, renewable energy era. However, natural gas processing and transportation regulation require the removal of contaminant compounds such as carbon dioxide (CO2). Regarding clean air, the increasing atmospheric concentrations of greenhouse gases, specifically CO2, is of particular concern. Therefore, new costeffective, high performance technologies for carbon capture have been researched and the design of materials with the ability to efficiently separate CO2 from other gases is of vital importance.(...)
Resumo:
The focus of this Thesis was the study of the sensor domains of two heme-containing methyl-accepting chemotaxis proteins (MCP) from Geobacter sulfurreducens: GSU0582 and GSU0935. These domains contain one c-type heme, form swapped dimers with a PAS-like fold and are the first examples of a new class of heme sensors. NMR spectroscopy was used to assign the heme and polypeptide signals in both sensors, as a first step to probe conformational changes in the vicinity of the hemes. However, the presence of two conformations in solution impaired the confident assignment of the polypeptide signals. To understand how conformational changes and swapped dimerization mechanism can effectively modulate the function of the two sensor domains and their signal transduction process, the sensor domains folding and stability were studied by circular dichroism and UV-visible spectroscopy. The results showed differences in the thermodynamic stability of the sensors, with GSU0582 displaying higher structural stability. These studies also demonstrated that the heme moiety undergoes conformational changes matching those occurring at the global protein structure and that the content of intrinsically disordered segments within these proteins (25% for GSU0935; 13% for GSU0582) correlates with the stability differences observed. The thermodynamic and kinetic properties of the sensor domains were determined at different pH and ionic strength by visible spectroscopy and stopped-flow techniques. Despite the remarkably similar spectroscopic and structural features of the two sensor domains, the results showed that their properties are quite distinct. Sensor domain GSU0935 displayed more negative reduction potentials and smaller reduction rate constants, which were more affected by pH and ionic strength. The available structures were used to rationalize these differences. Overall, the results described in this Thesis indicate that the two G. sulfurreducens MCP sensor domains are designed to function in different working potential ranges, allowing this bacterium to trigger an adequate cellular response in distinct anoxic subsurface environments.
Resumo:
A thermal Energy Storage Unit (ESU) could be used to attenuate inherent temperature fluctuations of a cold finger, either from a cryocooler working or due to sudden income heat bursts. An ESU directly coupled to the cold source acts as a thermal buffer temporarily increasing its cooling capacity and providing a better thermal stability of the cold finger (“Power Booster mode”). The energy storage units presented here use an enthalpy reservoir based on the high latent heat of the liquid-vapour transition of neon in the temperature range 38 - 44 K to store up to 900 J, and that uses a 6 liters expansion volume at RT in order to work as a closed system. Experimental results in the power booster mode will be described: in this case, the liquid neon cell was directly coupled to the cold finger of the working cryocooler, its volume (12 cm3) allowing it to store 450 J at around 40 K. 10 W heat bursts were applied, leading to liquid evaporation, with quite reduced temperature changes. The liquid neon reservoir can also work as a temporary cold source to be used after stopping the cryocooler, allowing for a vibration-free environment. In this case the enthalpy reservoir implemented (24 cm3) was linked to the cryocooler cold finger through a gas gap heat switch for thermal coupling/decoupling of the cold finger. We will show that, by controlling the enthalpy reservoir’s pressure, 900 J can be stored at a constant temperature of 40 K as in a triple-point ESU.
Resumo:
In this thesis a piezoelectric energy harvesting system, responsible for regulating the power output of a piezoelectric transducer subjected to ambient vibration, is designed to power an RF receiver with a 6 mW power consump-tion. The electrical characterisation of the chosen piezoelectric transducer is the starting point of the design, which subsequently presents a full-bridge cross-coupled rectifier that rectifies the AC output of the transducer and a low-dropout regulator responsible for delivering a constant voltage system output of 0.6 V, with low voltage ripple, which represents the receiver’s required sup-ply voltage. The circuit is designed using CMOS 130 nm UMC technology, and the system presents an inductorless architecture, with reduced area and cost. The electrical simulations run for the complete circuit lead to the conclusion that the proposed piezoelectric energy harvesting system is a plausible solution to power the RF receiver, provided that the chosen transducer is subjected to moderate levels of vibration.
Resumo:
In this thesis a CMOS low-power and low-voltage RF receiver front-end is presented. The main objective is to design this RF receiver so that it can be powered by a piezoelectric energy harvesting power source, included in a Wireless Sensor Node application. For this type of applications the major requirements are: the low-power and low-voltage operation, the reduced area and cost and the simplicity of the architecture. The system key blocks are the LNA and the mixer, which are studied and optimized with greater detail, achieving a good linearity, a wideband operation and a reduced introduction of noise. A wideband balun LNA with noise and distortion cancelling is designed to work at a 0.6 V supply voltage, in conjunction with a double-balanced passive mixer and subsequent TIA block. The passive mixer operates in current mode, allowing a minimal introduction of voltage noise and a good linearity. The receiver analog front-end has a total voltage conversion gain of 31.5 dB, a 0.1 - 4.3 GHz bandwidth, an IIP3 value of -1.35 dBm, and a noise figure lower than 9 dB. The total power consumption is 1.9 mW and the die area is 305x134.5 m2, using a standard 130 nm CMOS technology.
Resumo:
A apresentação do presente relatório visa a obtenção do Grau de Mestre em Ensino de Físico Química de acordo com o estabelecido no regulamento para Licenciados “Pré-Bolonha”, que abrange as licenciaturas de cinco anos com, pelo menos, cinco anos de experiência profissional. O percurso académico e profissional permitiram a aquisição de conhecimentos, tanto na Física como na Química, e um conjunto de aptidões como a capacidade organizacional, a capacidade de trabalhar em equipa e competências sociais. A constante vontade em atualizar conhecimentos e adquirir novas competências têm sido um incentivo para continuar a frequentar cursos de formação, seminários, workshops conferências dedicadas a esta área, assim como às do ensino. O presente trabalho é composto por duas partes. Na primeira parte, encontra-se a discrição da minha atividade profissional. Na segunda parte, encontra-se a apresentação detalhada do estudo da atividade laboratorial da bola saltitante por dois processos diferentes: utilizando um sensor de movimento e usando a análise de vídeo através do software Tracker.
Resumo:
The “CMS Safety Closing Sensors System” (SCSS, or CSS for brevity) is a remote monitoring system design to control safety clearance and tight mechanical movements of parts of the CMS detector, especially during CMS assembly phases. We present the different systems that makes SCSS: its sensor technologies, the readout system, the data acquisition and control software. We also report on calibration and installation details, which determine the resolution and limits of the system. We present as well our experience from the operation of the system and the analysis of the data collected since 2008. Special emphasis is given to study positioning reproducibility during detector assembly and understanding how the magnetic fields influence the detector structure.
Resumo:
A proteção dos recursos hídricos tem uma enorme importância ecológica, sendo a água um recurso indispensável à Vida e fundamental para o bem-estar de uma sociedade. Para isso, muitos dos poluentes que afetam a qualidade deste recurso natural são detetados e eliminados nas estações de tratamento de águas residuais. Porém, o impacto dos Produtos Farmacêuticos e de Cuidado Pessoal (PPCPs), usados à escala global, carece ainda da atenção necessária, dado que os meios técnicos atualmente disponíveis para detetar estes produtos são dispendiosos ou insuficientes. Dentro daquela classe de produtos, destaca-se o Ibuprofeno, uma vez que este composto, sendo lipossolúvel, tem a capacidade para se acumular nas gorduras dos seres vivos e, por conseguinte, persistir no meio-ambiente com efeitos nocivos. Para além desse facto, por diferentes vias de reação, o Ibuprofeno tem potencial para gerar produtos de carácter semelhante. No entanto, pouco esforços têm sido feitos no sentido de o detetar. Assim, pretendeu-se com este projeto desenvolver metodologias com vista à deteção de muito baixas concentrações (entre o nano e o picoMolar) daquele composto em meio aquoso. Foi utilizada a tecnologia de Língua Eletrónica por Espectroscopia de Impedância e, para tentar melhorar a sensibilidade do sensor à molécula-alvo, foram utilizados filmes finos à base de nanotubos de carbono e de diferentes polieletrólitos, preparados pela técnica de Camada-sobre-Camada (LbL, do inglês Layer-by-Layer). A caracterização destes filmes foi feita pela técnica Espectrofotometria na faixa dos Ultravioleta e Visível. Para além da análise de diferentes concentrações de Ibuprofeno, foram ainda analisadas soluções de Cloreto de Sódio, com o intuito de perceber se o sensor é versátil na deteção de outro tipo de compostos, sendo, então, o sal um composto barato e relevante neste âmbito, uma vez que a água na Natureza apresenta sempre alguma salinidade. O trabalho compreendeu ainda o desenvolvimento de um programa informático para automatizar o processo de aquisição dos dados espectrais de impedância, recolhidos pelo analisador HAMEG Programmable LCR Bridge HM8118, o que foi feito com sucesso. Posteriormente, os dados foram tratados pelo procedimento estatístico de Análise de Componentes Principais, que permitiu discriminar espacialmente e sequencialmente as diferentes concentrações dos compostos analisados.
Resumo:
INTRODUCTION: Snake bite, a problem in public health, generally occurs where there is no electric power. METHODS: A comparative clinical study was conducted with 102 victims of Bothrops snake bite, from the state of Amazonas, Brazil; 58 victims were treated with liofilizated trivalent antivenom serum (SATL) and 44 victims treated with liquid bivalent and monovalent antivenom serum (SAMBL). RESULTS: 17% (10/58) of patients presented adverse effects with the SATL and 25% (11/44) with the SAMBL. CONCLUSIONS: There was no statistic difference in number of adverse effects between the two types of snake bite antivenom.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Master’s Double Degree in Finance from Maastricht University and NOVA – School of Business and Economics
Resumo:
The growing demand for materials and devices with new functionalities led to the increased inter-est in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by sol-vothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the perfor-mance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The dep-osition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The produced transistors work at low potential and with improved ON-OFF current ratio, up to 6 orders of mag-nitude. To summarize, the low temperatures used in the production of the devices are compatible with flexible substrates and additionally, the low cost of the techniques involved can be adapted for disposable devices.
Resumo:
The need for more efficient illumination systems has led to the proliferation of Solid-State Lighting (SSL) systems, which offer optimized power consumption. SSL systems are comprised of LED devices which are intrinsically fast devices and permit very fast light modulation. This, along with the congestion of the radio frequency spectrum has paved the path for the emergence of Visible Light Communication (VLC) systems. VLC uses free space to convey information by using light modulation. Notwithstanding, as VLC systems proliferate and cost competitiveness ensues, there are two important aspects to be considered. State-of-the-art VLC implementations use power demanding PAs, and thus it is important to investigate if regular, existent Switched-Mode Power Supply (SMPS) circuits can be adapted for VLC use. A 28 W buck regulator was implemented using a off-the-shelf LED Driver integrated circuit, using both series and parallel dimming techniques. Results show that optical clock frequencies up to 500 kHz are achievable without any major modification besides adequate component sizing. The use of an LED as a sensor was investigated, in a short-range, low-data-rate perspective. Results show successful communication in an LED-to-LED configuration, with enhanced range when using LED strings as sensors. Besides, LEDs present spectral selective sensitivity, which makes them good contenders for a multi-colour LED-to-LED system, such as in the use of RGB displays and lamps. Ultimately, the present work shows evidence that LEDs can be used as a dual-purpose device, enabling not only illumination, but also bi-directional data communication.