907 resultados para LEUKOCYTE RECRUITMENT
Resumo:
Fen1 or maturation factor 1 is a 5'-3' exonuclease essential for the degradation of the RNA primer-DNA junctions at the 5' ends of immature Okazaki fragments prior to their ligation into a continuous DNA strand. The gene is also necessary for repair of damaged DNA in yeast. We report that human proliferating-cell nuclear antigen (PCNA) associates with human Fen1 with a Kd of 60 nM and an apparent stoichiometry of three Fen1 molecules per PCNA trimer. The Fen1-PCNA association is seen in cell extracts without overexpression of either partner and is mediated by a basic region at the C terminus of Fen1. Therefore, the polymerase delta-PCNA-Fen1 complex has all the activities associated with prokaryotic DNA polymerases involved in replication: 5'-3' polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. Although p21, a regulatory protein induced by p53 in response to DNA damage, interacts with PCNA with a comparable Kd (10 nM) and a stoichiometry of three molecules of p21 per PCNA trimer, a p21-PCNA-Fen1 complex is not formed. This mutually exclusive interaction suggests that the conformation of a PCNA trimer switches such that it can either bind p21 or Fen1. Furthermore, overexpression of p21 can disrupt Fen1-PCNA interaction in vivo. Therefore, besides interfering with the processivity of polymerase delta-PCNA, p21 also uncouples Fen1 from the PCNA scaffold.
Resumo:
Herein we describe the molecular characterization of the human leukocyte activation antigen CD100 and identify it as the first semaphorin, to our knowledge, in the immune system. Semaphorins have recently been described as neuronal chemorepellants that direct pioneering neurons during nervous system development. In this study we demonstrate that CD100 induces B cells to aggregate and improves their viability in vitro. We show that CD100 modifies CD40-CD40L B-cell signaling by augmenting B-cell aggregation and survival and down-regulating CD23 expression. Thus, these results suggest that semaphorins as exemplified by CD100 also play a functional role in the immune system.
Resumo:
Lipid bodies, cytoplasmic inclusions that develop in cells associated with inflammation, are inducible structures that might participate in generating inflammatory eicosanoids. Cis-unsaturated fatty acids (arachidonic and oleic acids) rapidly induced lipid body formation in leukocytes, and this lipid body induction was inhibited by aspirin and nonsteroidal antiinflammatory drugs (NSAIDs). Several findings indicates that the inhibitory effect of aspirin and NSAIDs on lipid body formation was independent of cyclooxygenase (COX) inhibition. First, the non-COX inhibitor, sodium salicylate, was as potent as aspirin in inhibiting lipid body formation elicited by cis-fatty acids. Second, cis-fatty acid-induced lipid body formation was not impaired in macrophages from COX-1 or COX-2 genetically deficient mice. Finally, NSAIDs inhibited arachidonic acid-induced lipid body formation likewise in macrophages from wild-type and COX-1- and COX-2-deficient mice. An enhanced capacity to generate eicosanoids developed after 1 hr concordantly with cis-fatty acid-induced lipid body formation. Arachidonic and oleic acid-induced lipid body numbers correlated with the enhanced levels of leukotrienes B4 and C4 and prostaglandin E2 produced after submaximal calcium ionophore stimulation. Aspirin and NSAIDs inhibited both induced lipid body formation and the enhanced capacity for forming leukotrienes as well as prostaglandins. Our studies indicate that lipid body formation is an inducible early response in leukocytes that correlates with enhanced eicosanoid synthesis. Aspirin and NSAIDs, independent of COX inhibition, inhibit cis-fatty acid-induced lipid body formation in leukocytes and in concert inhibit the enhanced synthesis of leukotrienes and prostaglandins.
Resumo:
Natural killer (NK) cells expressing specific p58 NK receptors are inhibited from lysing target cells that express human leukocyte antigen (HLA)-C class I major histocompatibility complex molecules. To investigate the interaction between p58 NK receptors and HLA-Cw4, the extracellular domain of the p58 NK receptor specific for HLA-Cw4 was overexpressed in Escherichia coli and refolded from purified inclusion bodies. The refolded NK receptor is a monomer in solution. It interacts specifically with HLA-Cw4, blocking the binding of a p58-Ig fusion protein to HLA-Cw4-expressing cells, but does not block the binding of a p58-Ig fusion protein specific for HLA-Cw3 to HLA-Cw3-expressing cells. The bacterially expressed extracellular domain of HLA-Cw4 heavy chain and beta2-microglobulin were refolded in the presence of a HLA-Cw4-specific peptide. Direct binding between the soluble p58 NK receptor and the soluble HLA-Cw4-peptide complex was observed by native gel electrophoresis. Titration binding assays show that soluble monomeric receptor forms a 1:1 complex with HLA-Cw4, independent of the presence of Zn2+. The formation of complexes between soluble, recombinant molecules indicates that HLA-Cw4 is sufficient for specific ligation by the NK receptor and that neither glycoprotein requires carbohydrate for the interaction.
Resumo:
Two chemokine (chemoattractant cytokines) beta peptides, macrophage inflammatory proteins 1 alpha and 1 beta (MIP-1 alpha and MIP-1 beta), were induced in human monocyte cultures following infection with the human immunodeficiency virus type 1 (HIV-1). Induction depended on productive viral infection: not only did the kinetics of MIP-1 peptide induction closely follow those of viral replication, but monocyte cultures inoculated with heat-inactivated virus or infected in the presence of AZT failed to produce these chemokine beta peptides. In addition, HIV infection markedly altered the pattern of beta chemokine expression elicited by tumor necrosis factor (TNF), itself a potent proinflammatory cytokine upregulated during the development of AIDS. Reverse transcription (RT)-PCR and RT-in situ PCR studies on brain tissue from patients with AIDS dementia demonstrated elevated MIP-1 alpha and MIP-1 beta mRNA expression relative to comparable samples from HIV-1-infected patients without dementia. Cells expressing chemokines in HIV-1-infected brains were identified morphologically as microglia and astrocytes. As MIP-1 alpha and MIP-1 beta are potent chemoattractants for both monocytes and specific subpopulations of lymphocytes, this dysregulation of beta chemokine expression may influence the trafficking of leukocytes during HIV infection. These data, taken together, suggest a mechanism by which HIV-1-infected monocytes might recruit uninfected T cells and monocytes to sites of active viral replication or inflammation, notably the brain and lymph nodes.
Resumo:
We used [3H]thymidine to document the birth of neurons and their recruitment into the hippocampal complex (HC) of juvenile (4.5 months old) and adult blackcapped chickadees (Parus atricapillus) living in their natural surroundings. Birds received a single dose of [3H]thymidine in August and were recaptured and killed 6 weeks later, in early October. All brains were stained with Cresyl violet, a Nissl stain. The boundaries of the HC were defined by reference to the ventricular wall, the brain surface, or differences in neuronal packing density. The HC of juveniles was as large as or larger than that of adults and packing density of HC neurons was 31% higher in juveniles than in adults. Almost all of the 3H-labeled HC neurons were found in a 350-m-wide layer of tissue adjacent to the lateral ventricle. Within this layer the fraction of 3H-labeled neurons was 50% higher in juveniles than in adults. We conclude that the HC of juvenile chickadees recruits more neurons and has more neurons than that of adults. We speculate that juveniles encounter greater environmental novelty than adults and that the greater number of HC neurons found in juveniles allows them to learn more than adults. At a more general level, we suggest that (i) long-term learning alters HC neurons irreversibly; (ii) sustained hippocampal learning requires the periodic replacement of HC neurons; (iii) memories coded by hippocampal neurons are transferred elsewhere before the neurons are replaced.
Resumo:
A murine model for antigen-induced bronchial hyperreactivity (BHR) and airway eosinophilia, two hallmarks of asthma, was developed using ovalbumin-immunized mice, which produce large amounts of IgE (named BP2, "Bons Producteurs 2," for High Line of Selection 2). A single intranasal ovalbumin challenge failed to modify the bronchial responses, despite the intense eosinophil recruitment into the bronchoalveolar lavage fluid and airways. When mice were challenged twice a day for 2 days or once a day for 10 days, BHR in response to i.v. 5-hydroxytryptamine or to inhaled methacholine was induced in BP2 mice but not in BALB/c mice. Histological examination showed that eosinophils reached the respiratory epithelium after multiple ovalbumin challenges in BP2 mice but remained in the bronchial submucosa in BALB/c mice. Total IgE titers in serum were augmented significantly with immunization in both strains, but much more so in BP2 mice. Interleukin 5 (IL-5) titers in serum and bronchoalveolar lavage fluid of BP2 mice were augmented by the antigenic provocation, and a specific anti-IL5 neutralizing antibody suppressed altogether airway eosinophilia and BHR, indicating a participation of IL-5 in its development. Our results indicate that the recruitment of eosinophils to the airways alone does not induce BHR in mice and that the selective effect on BP2 mice is related to their increased IgE titers associated with antigen-driven eosinophil migration to the epithelium, following formation and secretion of IL-5.
Resumo:
Aspirin [acetylsalicylic acid (ASA)], along with its analgesic-antipyretic uses, is now also being considered for cardiovascular protection and treatments in cancer and human immunodeficiency virus infection. Although many of ASA's pharmacological actions are related to its ability to inhibit prostaglandin and thromboxane biosynthesis, some of its beneficial therapeutic effects are not completely understood. Here, ASA triggered transcellular biosynthesis of a previously unrecognized class of eicosanoids during coincubations of human umbilical vein endothelial cells (HUVEC) and neutrophils [polymorphonuclear leukocytes (PMN)]. These eicosanoids were generated with ASA but not by indomethacin, salicylate, or dexamethasone. Formation was enhanced by cytokines (interleukin 1 beta) that induced the appearance of prostaglandin G/H synthase 2 (PGHS-2) but not 15-lipoxygenase, which initiates their biosynthesis from arachidonic acid in HUVEC. Costimulation of HUVEC/PMN by either thrombin plus the chemotactic peptide fMet-Leu-Phe or phorbol 12-myristate 13-acetate or ionophore A23187 leads to the production of these eicosanoids from endogenous sources. Four of these eicosanoids were also produced when PMN were exposed to 15R-HETE [(15R)-15-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid] and an agonist. Physical methods showed that the class consists of four tetraene-containing products from arachidonic acid that proved to be 15R-epimers of lipoxins. Two of these compounds (III and IV) were potent inhibitors of leukotriene B4-mediated PMN adhesion to HUVEC, with compound IV [(5S,6R,15R)-5,6,15-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoi c acid; 15-epilipoxin A4] active in the nanomolar range. These results demonstrate that ASA evokes a unique class of eicosanoids formed by acetylated PGHS-2 and 5-lipoxygenase interactions, which may contribute to the therapeutic impact of this drug. Moreover, they provide an example of a drug's ability to pirate endogenous biosynthetic mechanisms to trigger new mediators.
Resumo:
Hepatocyte nuclear factor 4 (HNF-4) is a prominent member of the family of liver-enriched transcription factors, playing a role in the expression of a large number of liver-specific genes. We report here that HNF-4 is a phosphoprotein and that phosphorylation at tyrosine residue(s) is important for its DNA-binding activity and, consequently, for its transactivation potential both in cell-free systems and in cultured cells. Tyrosine phosphorylation did not affect the transport of HNF-4 from the cytoplasm to the nucleus but had a dramatic effect on its subnuclear localization. HNF-4 was concentrated in distinct nuclear compartments, as evidenced by in situ immunofluorescence and electron microscopy. This compartmentalization disappeared when tyrosine phosphorylation was inhibited by genistein. The correlation between the intranuclear distribution of HNF-4 and its ability to activate endogenous target genes demonstrates a phosphorylation signal-dependent pathway in the regulation of transcription factor activity.
Resumo:
Detergent-resistant plasma membrane structures, such as caveolae, have been implicated in signalling, transport, and vesicle trafficking functions. Using sucrose gradient ultracentrifugation, we have isolated low-density, Triton X-100-insoluble membrane domains from RBL-2H3 mucosal mast cells that contain several markers common to caveolae, including a src-family tyrosine kinase, p53/56lyn. Aggregation of Fc epsilon RI, the high-affinity IgE receptor, causes a significant increase in the amount of p53/56lyn associated with these low-density membrane domains. Under our standard conditions for lysis, IgE-Fc epsilon RI fractionates with the majority of the solubilized proteins, whereas aggregated receptor complexes are found at a higher density in the gradient. Stimulated translocation of p53/56lyn is accompanied by increased tyrosine phosphorylation of several proteins in the low-density membrane domains as well as enhanced in vitro tyrosine kinase activity toward these proteins and an exogenous substrate. With a lower detergent-to-cell ratio during lysis, significant Fc epsilon RI remains associated with these membrane domains, consistent with the ability to coimmunoprecipitate tyrosine kinase activity with Fc epsilon RI under similar lysis conditions [Pribluda, V. S., Pribluda, C. & Metzger, H. (1994) Proc. Natl. Acad. Sci. USA 91, 11246-11250]. These results indicate that specialized membrane domains may be directly involved in the coupling of receptor aggregation to the activation of signaling events.
Resumo:
Alternative splicing of precursor messenger RNAs (pre-mRNAs) is an important mechanism for the regulation of gene expression. The members of the SR protein family of pre-mRNA splicing factors have distinct functions in promoting alternative splice site usage. Here we show that SR proteins are required for the first step of spliceosome assembly, interaction of the U1 small nuclear ribonucleoprotein complex (U1 snRNP) with the 5' splice site of the pre-mRNA. Further, we find that individual SR proteins have distinct abilities to promote interaction of U1 snRNP with alternative 5' splice junctions. These results suggest that SR proteins direct 5' splice site selection by regulation of U1 snRNP assembly onto the pre-mRNA.
Resumo:
Non-traditional means of recruitment for the twenty-first century knowledge worker need to accompany traditional means of recruitment due to an increased usage of technology by the twenty-first century knowledge worker. In this capstone project, the author examined the recruiting efficacy of social networks. Non-traditional means of recruitment through social networks via the World Wide Web can help organizations compete for potential applicants and assist job seekers in securing employment. These means are cost effective for the employer. Examples of organizational usage in this investigation illustrate that social networking can improve efficacy for recruitment and generational needs.
Resumo:
Globalization and the spread of Information and Communication Technology (ICT), particularly Internet usage, have changed the practice of recruiting employees. The Internet has become an integral part of Human Resource (HR) talent management, and as a result, a majority of business organizations in Germany have adopted an online recruitment initiative. However, technology alone no longer provides a competitive advantage. To meet their talent requirements, business organizations have turned to recruiting alternatives such as electronic recruitment or e-recruitment, which is a form of recruitment using electronic media tools to attract, hire, and retain job seekers. In this investigation, the author examined the efficacy and opportunities of e-recruitment in medium-sized German business organizations.. The author determined that many medium-sized German companies are using the Internet to recruit online but not effectively enough to create and maintain a sustainable strategic advantage. The author concluded that several areas for improvements exist in e-recruitment processes.
Resumo:
Beca JAE-Predoctoral CISC; Proyecto LARECO CTM2011-25929