998 resultados para Karyotypic evolution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three materials, pure aluminium, Al-4 wt.% Mg, alpha-brass have been chosen to understand the evolution of texture and microstructure during rolling. Pure Al develops a strong copper-type rolling texture and the deformation is entirely slip dominated. In Al-4Mg alloy, texture is copper-type throughout the deformation. The advent of Cu-type shear bands in the later stages of deformation has a negligible effect on the final texture. alpha-brass shows a characteristic brass-type texture from the early stages of rolling. Extensive twinning in the intermediate stages of deformation (epsilon(t) similar to 0.5) causes significant texture reorientation towards alpha-fiber. Beyond 40% reduction, deformation is dominated by Bs-type shear bands, and the banding coincides with the evolution of <111>parallel to ND components. The crystallites within the bands preferentially show <110>parallel to ND components. The absence of the Cu component throughout the deformation process indicates that, for the evolution of brass-type texture, the presence of Cu component is not a necessary condition. The final rolling texture is a synergistic effect of deformation twinning and shear banding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the evolution of crystallographic texture in three of the most important high strength aluminium alloys, viz., AA2219, AA7075 and AFNOR7020 in the cold rolled and artificially aged condition. Bulk texture results were obtained by plotting pole figures from X-ray diffraction results followed by Orientation Distribution Function (ODF) analysis and micro-textures were measured using EBSD. The results indicate that the deformation texture components Cu, Bs and S, which were also present in the starting materials, strengthen with increase in amount of deformation. On the other hand, recrystallization texture components Goss and Cube weaken. The Bs component is stronger in the deformation texture. This is attributed to the shear banding. In-service applications indicate that the as-processed AFNOR7020 alloy fails more frequently compared to the other high strength Al alloys used in the aerospace industry. Detailed study of deformation texture revealed that strong Brass (Bs) component could be associated to shear banding, which in turn could explain the frequent failures in AFNOR7020 alloy. The alloying elements in this alloy that could possibly influence the stacking fault energy of the material could be accounted for the strong Bs component in the texture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding technology evolution through periodic landscaping is an important stage of strategic planning in R&D Management. In fields like that of healthcare, where the initial R&D investment is huge and good medical product serve patients better, these activities become crucial. Approximately five percentage of the world population has hearing disabilities. Current hearing aid products meet less than ten percent of the global needs. Patent data and classifications on cochlear implants from 1977-2010, show the landscapes and evolution in the area of such implant. We attempt to highlight emergence and disappearance of patent classes over period of time showing variations in cochlear implant technologies. A network analysis technique is used to explore and capture technology evolution in patent classes showing what emerged or disappeared over time. Dominant classes are identified. The sporadic influence of university research in cochlear implants is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A closed-form expression for the dual of dissipation potential is derived within the framework of irreversible thermodynamics using the principles of dimensional analysis and self-similarity. Through this potential, a damage evolution law is proposed for concrete under fatigue loading using the concepts of damage mechanics in conjunction with fracture mechanics. The proposed law is used to compute damage in a volume element when a member is subjected to fatigue loading. The evolution of damage from microcracking to macrocracking of the entire member is captured through a series of volume elements failing one after the other. The number of loading cycles to failure of the member is obtained as the summation of number of cycles to failure for each individual volume element. A parametric study is conducted to determine the effect of the size of the volume element on the model's prediction of fatigue life. A global damage index is also defined, and the residual moment carrying capacity of damaged beams is evaluated. Through a deterministic sensitivity analysis, it is found that the load range and maximum aggregate size are the most influencing parameters on the fatigue life of a plain concrete beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 degrees C, 150 degrees C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C-2) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted similar to 55 degrees due to negative shear attributed to friction. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study addresses the evolution of texture and microstructure during annealing in a cryorolled copper. Transition from copper to brass texture during the cryo-rolling has been illustrated. Twinning and interaction between twins and shear bands have been found to play the important role in grain refinement and strengthening. The low temperature vacancy clustering and its effect on the recrystallization have been experimentally demonstrated. Fine scale twinning, and grain refinement have been attributed to the higher yield strength found in the case of samples subjected to cryo-rolling. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study of plane strain wedge indentation of a model porous brittle solid has been made to understand the effect of indentation parameters on the evolution of the deformation field and the accompanying volume change. A series of high-speed, high-resolution images of the indentation region and simultaneous measurements of load response were captured through the progression of the indentation process. Particle image velocimetry analysis of the images facilitated in situ measurement of the evolution of the resulting plastic zone in terms of incremental material displacement (velocity), strain rate, strain and volume change (e.g., local pore collapse). These measurements revealed initiation and propagation of flow localizations and fractures, as well as enabled estimate of volume changes occurring in the deformation zone. The results were directly compared with theoretical estimates of indentation pressure and deformation zone geometry and were used to validate a modified cavity expansion solution that incorporates effects of volume changes in the plastic zone. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale production of hydrogen gas by water electrolysis is hindered by the sluggish kinetics of oxygen evolution reaction (OER) at the anode. The development of a highly active and stable catalyst for OER is a challenging task. Electrochemically prepared amorphous metal-based catalysts have gained wide attention after the recent discovery of a cnbalt-phosphate (Co-Pi) catalyst: Herein, an amorphous iridium-phosphate (Ir-Pi) is investigated as an oxygen evolution catalyst. The catalyst is prepared by the anodic polarization of carbon paper electrodes in neutral phosphate buffer solutions containing IrCl3. The Ir-Pi film deposited on the substrate has significant amounts of phosphate and It centers in an oxidation state higher than +4. Phosphate plays a significant role in the deposition of the catalyst and also in its activity toward OER. The onset potential of OER on the Ir-Pi is about 150 mV lower in comparison with the Co-Pi under identical experimental conditions. Thus, Ir-Pi is a promising catalyst for electrochemical oxidation of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many bacterial transcription factors do not behave as per the textbook operon model. We draw on whole genome work, as well as reported diversity across different bacteria, to argue that transcription factors may have evolved from nucleoid-associated proteins. This view would explain a large amount of recent data gleaned from high-throughput sequencing and bioinformatic analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zircon has been recognized as the unaltered part of the Earth's history which preserves nearly 4 billion year record of earth's evolution. Zircon preserves igneous and metamorphic processes during its formation and remains unaffected by sedimentary processes and crustal recycling. U-Pb and Lu-Hf in zircon work as geochronometer and geochemical tracer respectively. Zircon provide valuable information about the source composition of the rocks and the intrinsic details of an unseen crust-mantle processes. The world wide data of U-Pb and Lu-Hf isotope systems in zircon reveal crustal evolution through geological history. Moreover, the U-Pb age pattern of zircons show distinct peaks attributed to preservation of crustal rocks or mountain building during supercontinent assembly. The histogram of continental crust preservation shows that nearly one-third of continental crust was formed during the Archean, almost 20% was formed during Paleoproterozoic and 14% in last 400 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Southern India is a collage of numerous crustal fragments formed since the Archean (2500 Ma ago) and reworked several times during the geological history. A close look at these terrains provides a window to understand the crustal evolutionary processes experienced by the continental crust in the past, such as crustal growth (formation of crust through addition of new magma) and crustal reworking (modification of an already existing crust). Here we discuss the evolutionary history of such a crustal fragment from the Southern Granulite Terrain (SGT) in peninsular India, namely Kolli-massif. Geology, structural deformation through time, and the implications in crustal assembly of southern India are exponded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-to-ferromagnetic- metal transition at T-C = 180 K and transforms into a ferromagnetic insulator below T-MI = 95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above T-C to T-MI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+:Cr3+ states in a 3:1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0) similar to 3.5(k(B)T(MI)) similar to 35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U similar to 4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t(2g) up-spin band favor a low-energy Peierls metal-insulator transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spite of intense research on ZnO over the past decade, the detailed investigation about the crystallographic texture of as obtained ZnO thin films/coatings, and its deviation with growth surface is scarce. We report a systematic study about the orientation distribution of nanostructured ZnO thin films fabricated by microwave irradiation with the variation of substrates and surfactants. The nanostructured films comprising of ZnO nanorods are grown on semiconductor substrates such as Si(100), Ge(100)], conducting substrates (ITO-coated glass, Cr coated Si), and polymer coated Si (PMMA/Si) to examine the respective development of crystallographic texture. The ZnO deposited on semiconductor substrates yieldsmixed texture, whereas c-axis oriented ZnO nanostructured films are obtained by conducting substrate, and PMMA coated Si substrates. Among all the surfactants, nanostructured film produced by using the lower molecular weight of polymeric surfactants (polyvinylpyrrolidone) shows a stronger (0002) texture, and that can be tuned to (10 - 10) by increasing the molecular weight of the surfactant. The strongest basal pole is achieved for the ZnO deposited on PMMA coated Si as substrate, and cetyl-trimethyl ammonium bromide as cationic surfactant. The texture analysis is carried out by X-ray pole figure analysis using the Schultz reflection method. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The occurrence of high-pressure mafic-ultramafic bodies within major shear zones is one of the indicators of paleo-subduction. In mafic granulites of the Andriamena complex (north-eastern Madagascar) we document unusual textures including garnet-clinopyroxene-quartz coronas that formed after the breakdown of orthopyroxene-plagioclase-ilmenite. Textural evidence and isochemical phase diagram calculations in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2 system indicate a pressure-temperature (P-T) evolution from an isothermal (780 degrees C) pressure up to c. 24 kbar to decompression and cooling. Such a P-T trajectory is typically attained in a subduction zone setting where a gabbroic/ultramafic complex is subducted and later exhumed to the present crustal level during oceanic closure and final continental collision. The present results suggest that the presence of such deeply subducted rocks of the Andriamena complex is related to formation of the Betsimisaraka suture. LA-ICPMS U-Pb zircon dating of pelitic gneisses from the Betsimisaraka suture yields low Th/U ratios and protolith ages ranging from 2535 to 2625 Ma. A granitic gneiss from the Alaotra complex yields a zircon crystallization age of ca. 818 Ma and Th/U ratios vary from 1.08 to 2.09. K-Ar dating of muscovite and biotite from biotite-kyanite-sillimanite gneiss and garnet-biotite gneiss yields age of 486 +/- 9 Ma and 459 +/- 9 Ma respectively. We have estimated regional crustal thicknesses in NE Madagascar using a flexural inversion technique, which indicates the presence of an anomalously thick crust (c. 43 km) beneath the Antananarivo block. This result is consistent with the present concept that subduction beneath the Antananarivo block resulted in a more competent and thicker crust. The textural data, thermodynamic model, and geophysical evidence together provide a new insight to the subduction history, crustal thickening and evolution of the high-pressure Andriamena complex and its link to the terminal formation of the Betsimisaraka suture in north-eastern Madagascar. (C) 2015 Elsevier B.V. All rights reserved.