995 resultados para KINETIC STABILITY
Resumo:
The liquid-liquid critical point scenario of water hypothesizes the existence of two metastable liq- uid phases low-density liquid (LDL) and high-density liquid (HDL) deep within the supercooled region. The hypothesis originates from computer simulations of the ST2 water model, but the stabil- ity of the LDL phase with respect to the crystal is still being debated. We simulate supercooled ST2 water at constant pressure, constant temperature, and constant number of molecules N for N ≤ 729 and times up to 1 μs. We observe clear differences between the two liquids, both structural and dynamical. Using several methods, including finite-size scaling, we confirm the presence of a liquid-liquid phase transition ending in a critical point. We find that the LDL is stable with respect to the crystal in 98% of our runs (we perform 372 runs for LDL or LDL-like states), and in 100% of our runs for the two largest system sizes (N = 512 and 729, for which we perform 136 runs for LDL or LDL-like states). In all these runs, tiny crystallites grow and then melt within 1 μs. Only for N ≤ 343 we observe six events (over 236 runs for LDL or LDL-like states) of spontaneous crystal- lization after crystallites reach an estimated critical size of about 70 ± 10 molecules.
Resumo:
Interactions between the leukocyte adhesion receptor L-selectin and P-selectin glycoprotein ligand-1 play an important role in regulating the inflammatory response by mediating leukocyte tethering and rolling on adherent leukocytes. In this study, we have examined the effect of post-translational modifications of PSGL-1 including Tyr sulfation and presentation of sialylated and fucosylated O-glycans for L-selectin binding. The functional importance of these modifications was determined by analyzing soluble L-selectin binding and leukocyte rolling on CHO cells expressing various glycoforms of PSGL-1 or mutant PSGL-1 targeted at N-terminal Thr or Tyr residues. Simultaneous expression of core-2 beta1,6-N-acetylglucosaminyltransferase and fucosyltransferase VII was required for optimal L-selectin binding to PSGL-1. Substitution of Thr-57 by Ala but not of Thr-44, strongly decreased L-selectin binding and leukocyte rolling on PSGL-1. Substitution of Tyr by Phe revealed that PSGL-1 Tyr-51 plays a predominant role in mediating L-selectin binding and leukocyte rolling whereas Tyr-48 has a minor role, an observation that contrasts with the pattern seen for the interactions between PSGL-1 and P-selectin where Tyr-48 plays a key role. Molecular modeling analysis of L-selectin and P-selectin interactions with PSGL-1 further supported these observations. Additional experiments showed that core-2 O-glycans attached to Thr-57 were also of critical importance in regulating the velocity and stability of leukocyte rolling. These observations pinpoint the structural characteristics of PSGL-1 that are required for optimal interactions with L-selectin and may be responsible for the specific kinetic and mechanical bond properties of the L-selectin-PSGL-1 adhesion receptor-counterreceptor pair.
Resumo:
We study the relaxational dynamics of the one-spin facilitated Ising model introduced by Fredrickson and Andersen. We show the existence of a critical time which separates an initial regime in which the relaxation is exponentially fast and aging is absent from a regime in which relaxation becomes slow and aging effects are present. The presence of this fast exponential process and its associated critical time is in agreement with some recent experimental results on fragile glasses.
Resumo:
To evaluate the various factors influencing the stability of granular base course mixes, three primary goals were included in the project: (1) determination of a suitable and realistic laboratory method of compaction; (2) effect of gradation, density and mineralogy of the fines on sheara ing strength; and (3) possible improvement of the shear strength with organic and inorganic chemical stabilization additives.
Resumo:
Isolated hepatocytes incubated with [35S]-methionine were examined for the time-dependent accumulation of [35S]-glutathione (GSH) in cytosol and mitochondria, the latter confirmed by density gradient purification. In GSH-depleted and -repleted hepatocytes, the increase of specific activity of mitochondrial GSH lagged behind cytosol, reaching nearly the same specific activity by 1-2 h. However, in hepatocytes from ethanol-fed rats, the rate of increase of total GSH specific radioactivity in mitochondria was markedly suppressed. In in vivo steady-state experiments, the mass transport of GSH from cytosol to mitochondria and vice versa was 18 nmol/min per g liver, indicating that the half-life of mitochondrial GSH was approximately 18 min in controls. The fractional transport rate of GSH from cytosol to mitochondria, but not mitochondria to cytosol, was significantly reduced in the livers of ethanol-fed rats. Thus, ethanol-fed rats exhibit a decreased mitochondrial GSH pool size due to an impaired entry of cytosol GSH into mitochondria. Hepatocytes from ethanol-fed rats exhibited a greater susceptibility to the oxidant stress-induced cell death from tert-butylhydroperoxide. Incubation with glutathione monoethyl ester normalized the mitochondrial GSH and protected against the increased susceptibility to t-butylhydroperoxide, which was directly related to the lowered mitochondrial GSH pool size in ethanol-fed cells.
Stability-dependent behavioural and electro-cortical reorganizations during bimanual switching tasks
Resumo:
A simple kinetic model of a two-component deformable and reactive bilayer is presented. The two differently shaped components are interconverted by a nonequilibrium reaction, and a phenomenological coupling between local composition and curvature is proposed. When the two components are not miscible, linear stability analysis predicts, and numerical simulations show, the formation of stationary nonequilibrium composition/curvature patterns whose typical size is determined by the reactive process. For miscible components, a linearization of the dynamic equations is performed in order to evaluate the correlation function for shape fluctuations from which the behavior of these systems in micropipet aspiration experiments can be predicted.
Resumo:
We present a nonequlibrium approach for the study of a flexible bilayer whose two components induce distinct curvatures. In turn, the two components are interconverted by an externally promoted reaction. Phase separation of the two species in the surface results in the growth of domains characterized by different local composition and curvature modulations. This domain growth is limited by the effective mixing due to the interconversion reaction, leading to a finite characteristic domain size. In addition to these effects, first introduced in our earlier work [ Phys. Rev. E 71 051906 (2005)], the important new feature is the assumption that the reactive process actively affects the local curvature of the bilayer. Specifically, we suggest that a force energetically activated by external sources causes a modification of the shape of the membrane at the reaction site. Our results show the appearance of a rich and robust dynamical phenomenology that includes the generation of traveling and/or oscillatory patterns. Linear stability analysis, amplitude equations, and numerical simulations of the model kinetic equations confirm the occurrence of these spatiotemporal behaviors in nonequilibrium reactive bilayers.
Resumo:
Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.
Resumo:
Since the serendipitous discovery of ferrocene by Pauson and Kealy in 1951, it has become one of the most important structures in Organic Chemistry. Lately, kinetic resolution has emerged as a useful tool for the synthesis of planar chiral ferrocenes. This review aims to cover and discuss the development of this topic.
Resumo:
AIMS: To test the hypothesis that postural stability would be more affected during acute exposure in hypobaric (HH) than in normobaric (NH) hypoxia.¦METHODS: In separate trials, 12 subjects stood on a posturographic platform for two successive 25.6 sec tests in three conditions: eyes open (EO), eyes closed (EC), and verbal dual task (DT). Ambient pressure in O(2) was matched between HH and NH at 1700 and 3000 m, respectively.¦RESULTS: Compared to NH, the length of Centre of Pression trajectory in Y-axis was increased (p<0.05) in HH for EO at 1700 m, EC at 1700 and 3000 m, and for DT at 1700 m, whereas the variance of speed of CoP was decreased (p<0.05) in EO, EC, and DT at 1700 m. Compared to normobaric normoxia (NN; 400 m), the surface of CoP trajectory was increased (p<0.05) in HH in EO and EC at 3000 m.¦CONCLUSIONS: HH deteriorated postural stability in the antero-posterior plane, for the variance of speed and the surface of CoP in 3 conditions, whereas no difference was observed between NH and NN. These results suggest that hypobaria instead of hypoxia per se plays an important role to the altered balance classically reported in altitude.
Resumo:
Studies of hybrid zones can inform our understanding of reproductive isolation and speciation. Two species of brown lemur (Eulemur rufifrons and E. cinereiceps) form an apparently stable hybrid zone in the Andringitra region of south-eastern Madagascar. The aim of this study was to identify factors that contribute to this stability. We sampled animals at 11 sites along a 90-km transect through the hybrid zone and examined variation in 26 microsatellites, the D-loop region of mitochondrial DNA, six pelage and nine morphological traits; we also included samples collected in more distant allopatric sites. Clines in these traits were noncoincident, and there was no increase in either inbreeding coefficients or linkage disequilibrium at the centre of the zone. These results could suggest that the hybrid zone is maintained by weak selection against hybrids, conforming to either the tension zone or geographical selection-gradient model. However, a closer examination of clines in pelage and microsatellites indicates that these clines are not sigmoid or stepped in shape but instead plateau at their centre. Sites within the hybrid zone also occur in a distinct habitat, characterized by greater seasonality in precipitation and lower seasonality in temperature. Together, these findings suggest that the hybrid zone may follow the bounded superiority model, with exogenous selection favouring hybrids within the transitional zone. These findings are noteworthy, as examples supporting the bounded superiority model are rare and may indicate a process of ecologically driven speciation without geographical isolation.
Resumo:
In yeast, microtubules are dynamic filaments necessary for spindle and nucleus positioning, as well as for proper chromosome segregation. We identify a function for the yeast gene BER1 (Benomyl REsistant 1) in microtubule stability. BER1 belongs to an evolutionary conserved gene family whose founding member Sensitivity to Red light Reduced is involved in red-light perception and circadian rhythms in Arabidopsis. Here, we present data showing that the ber1Delta mutant is affected in microtubule stability, particularly in presence of microtubule-depolymerising drugs. The pattern of synthetic lethal interactions obtained with the ber1Delta mutant suggests that Ber1 may function in N-terminal protein acetylation. Our work thus suggests that microtubule stability might be regulated through this post-translational modification on yet-to-be determined proteins
Resumo:
Introduction: With the setting up of the newly Athlete's Biological Passport antidoping programme, novel guidelines have been introduced to guarantee results beyond reproach. We investigated in this context, the effect of storage time on the variables commonly measured for the haematological passport. We also wanted to assess for these variables, the within and between analyzer variations. Methods: Blood samples were obtained from top level male professional cyclists (27 samples for the first part of the study and 102 for the second part) taking part to major stage races. After collection, they were transported under refrigerated conditions (2 °C < T < 12 °C), delivered to the antidoping laboratory, analysed and then stored at approximately 4 °C to conduct analysis at different time points up to 72 h after delivery. A mixed-model procedure was used to determine the stability of the different variables. Results: As expected haemoglobin concentration was not affected by storage and showed stability for at least 72 h. Under the conditions of our investigation, the reticulocytes percentage showed a much better stability than previous published data (> 48 h) and the technical comparison of the haematology analyzer demonstrated excellent results. Conclusion: In conclusion, our data clearly demonstrate that as long as the World Anti-Doping Agency's guidelines are followed rigorously, all blood results reach the quality level required in the antidoping context.