975 resultados para Jet fuel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a pseudo-time-step method to calculate a (vector) Green function for the adjoint linearised Euler equations as a scattering problem in the frequency domain, for use as a jet-noise propagation prediction tool. A method of selecting the acoustics-related solution in a truncated spatial domain while suppressing any possible shear-layer-type instability is presented. Numerical tests for 3-D axisymmetrical parallel mean flows against semi-analytical reference solutions indicate that the new iterative algorithm is capable of producing accurate solutions with modest computational requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method to fabricate polymer field-effect transistors with submicron channel lengths is described. A thin polymer film is spin coated on a prepatterned resist with a low resolution to create a thickness contrast in the overcoated polymer layer. After plasma and solvent etching, a submicron-sized line structure, which templates the contour of the prepattern, is obtained. A further lift-off process is applied to define source-drain electrodes of transistors. With a combination of ink-jet printing, transistors with channel length down to 400 nm have been fabricated by this method. We show that drive current density increases as expected, while the on/off current ratio 106 is achieved. © 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rolls-Royce Integrated-Planar Solid Oxide Fuel Cell (IP-SOFC) consists of ceramic modules which have electrochemical cells printed on the outer surfaces. The cathodes are the outermost layer of each cell and are supplied with oxygen from air flowing over the outside of the module. The anodes are in direct contact with the ceramic structure and are supplied with fuel from internal gas channels. Natural gas is reformed into hydrogen for use by the fuel cells in a separate reformer module of similar design except that the fuel cells are replaced by a reforming catalyst layer. The performance of the modules is intrinsically linked to the behaviour of the gas flows within their porous structures. Because the porous layers are very thin, a one-dimensional flow model provides a good representation of the flow property variations between fuel channel and fuel cell or reforming catalyst. The multi-component convective-diffusive flows are simulated using a new theory of flow in porous material, the Cylindrical Pore Interpolation Model. The effects of the catalysed methane reforming and water-gas shift chemical reactions are also considered using appropriate kinetic models. It is found that the shift reaction, which is catalysed by the anode material, has certain beneficial effects on the fuel cell module performance. In the reformer module it was found that the flow resistance of the porous support structure makes it difficult to sustain a high methane conversion rate. Although the analysis is based on IP-SOFC geometry, the modelling approach and general conclusions are applicable to other types of SOFC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper is devoted to extending the new efficient frequency-domain method of adjoint Green's function calculation to curvilinear multi-block RANS domains for middle and farfield sound computations. Numerical details of the method such as grids, boundary conditions and convergence acceleration are discussed. Two acoustic source models are considered in conjunction with the method and acoustic modelling results are presented for a benchmark low-Reynolds-number jet case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The probabilistic nature of ignition of premixed and non-premixecl turbulent opposed-jet flames has been examined and the flame structures following ignition have been visualized directly and with OH-PLIF. It has been found that high bulk velocities decrease the ignition probability in all locations and for all flames. Ignition is sometimes possible even in locations where there is negligible probability of finding flammable mixture and is sometimes impossible in locations with high probability of flammable fluid. The edge flame propagation speed is also estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work explored the use of industrial drop-on-demand inkjet printing for masking steel surfaces on engineering components, followed by chemical etching, to produce patterned surfaces. A solvent-based ink was printed on to mild steel samples and the influences of substrate topography and substrate temperature were investigated. Contact angle measurements were used to assess wettability. Regular patterns of circular spots (∼60 /on diameter) and more complex mask patterns were printed. Variation of the substrate temperature had negligible effect on the final size of the printed drops or on the resolution achieved. Colored optical interference fringes were observed on the dried ink deposits and correlated with film thickness measurements by whitelight interferometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Progress in simulating chevron nozzle jet flows using ILES/RANS-ILES approaches and using the Ffowcs Williams and Hawkings (FW-H) surface integral method to predict the radiated far field sound is presented in this paper. With the focus on the realistic chevron geometries, SMC001 and SMC006, coarse and fine meshes are generated in the range of 3∼13 million mesh cells. Throughout this work, to minimize numerical dissipation introduced by mesh quality issues, the hexahedral cell type is used. Numerical simulations are then carried out with cell-vertex and cell-centered codes. Despite the modest grids, mean velocities and turbulent statistics are found to be in reasonable accord with measurements. Also, far field sound levels predicted by the FW-H post processor are encouraging. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an experimental investigation into the effect of unsteady fuel injection on the performance of a valveless pulse combustor. Two fuel systems were used. The first delivered a steady flow of ethylene through choked nozzles, and the second delivered ethylene in discrete pulses using high-frequency fuel injectors. Both fuel systems injected directly into the combustion chamber. The high-frequency fuel injectors were phase locked to the unsteady pressure measured on the inlet pipe. The phase and opening pulse width of the injectors and the time-averaged fuel mass flow rate through the injectors were independently varied. For a given fuel mass flow rate, it is shown that the maximum pressure amplitude occurs when fuel is injected during flow reversal in the inlet pipe, i.e. flow direction is out of the combustor. The optimal fuel injection pulse width is shown to be approximately 2/9th of the cycle. It should, however, be noted that this is the shortest time in which the injectors can reliably be fully opened and closed. It is shown that by using unsteady fuel injection the mass flow rate of fuel needed to achieve a given amplitude of unsteady pressure can be reduced by up to 65% when compared with the steady fuel injection case. At low fuel mass flow rates unsteady fuel injection is shown to raise the efficiency of the combustor by a factor of 7 decreasing to a factor of 2 at high fuel mass flow rates. Copyright © 2008 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive a closed system of equations that relates the acoustically radiating flow variables to the sources of sound for homentropic flows. We use radiating density, momentum density and modified pressure as the dependent variables which leads to simple source terms for the momentum equations. The source terms involve the non-radiating parts of the density and momentum density fields. These non-radiating components are obtained by removing the radiating wavenumbers in the Fourier domain. We demonstrate the usefulness of this new technique on an axi-symmetric jet solution of the Navier-Stokes equations, obtained by direct numerical simulation (DNS). The dominant source term is proportional to the square of the non-radiating part of the axial momentum density. We compare the sound sources to that obtained by an acoustic analogy and find that they have more realistic physical properties. Their frequency content and amplitudes are consistent with. We validate the sources by computing the radiating sound field and comparing it to the DNS solution. © 2010 by S. Sinayoko, A. Agarwal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

mark Unsteady ejectors can be driven by a wide range of driver jets. These vary from pulse detonation engines, which typically have a long gap between each slug of fluid exiting the detonation tube (mark-space ratios in the range 0.1-0.2) to the exit of a pulsejet where the mean mass flow rate leads to a much shorter gap between slugs (mark-space ratios in the range 2-3). The aim of this paper is to investigate the effect of mark-space ratio on the thrust augmentation of an unsteady ejector. Experimental testing was undertaken using a driver jet with a sinusoidal exit velocity profile. The mean value, amplitude and frequency of the velocity profile could be changed allowing the length to diameter ratio of the fluid slugs L/D and the mark-space ratio (the ratio of slug length to the spacing between slugs) L/S to be varied. The setup allowed L/S of the jet to vary from 0.8 to 2.3, while the L/D ratio of the slugs could take any values between 3.5 and 7.5. This paper shows that as the mark-space ratio of the driver jet is increased the thrust augmentation drops. Across the range of mark-space ratios tested, there is shown to be a drop in thrust augmentation of 0.1. The physical cause of this reduction in thrust augmentation is shown to be a decrease in the percentage time over which the ejector entrains ambient fluid. This is the direct result ofthe space between consecutive slugs in the driver jet decreasing. The one dimensional model reported in Heffer et al. [1] is extended to include the effect of varying L/S and is shown to accurately capture the experimentally measured behavior ofthe ejector. Copyright © 2010 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several turbulent jet noise models starting from the classical Lighthill acoustic analogy to state-of-the art models are considered. No attempt is made to present any complete overview of jet noise theories. Instead, the aim is to emphasise the importance of sound generation and meanflow effects for the understanding and prediction of jet noise. For a recent acoustic analogy model, the consequences of jet flow simplification on the predicted sound spectra shape and the effective noise source location in the jet are discussed. © 2010 by the American Institute of Aeronautics and Astronautics, Inc.