986 resultados para Ionization of gases
Resumo:
Two types of poleward moving plasma concentration enhancements (PMPCEs) were observed during a sequence of pulsed reconnection events, both in the morning convection cell: Type L (low density) was associated with a cusp flow channel and seems likely to have been produced by ionization associated with particle precipitation, while Type H (high density) appeared to originate from the segmentation of the tongue of ionization by the processes which produced the Type L events. As a result, the Type L and Type H PMPCEs were interspersed, producing a complex density structure which underlines the importance of cusp flow channels as a mechanism for segmenting and structuring electron density in the cusp and shows the necessity of differentiating between at least two classes of electron density patches.
Resumo:
Objectives To model the impact on chronic disease of a tax on UK food and drink that internalises the wider costs to society of greenhouse gas (GHG) emissions and to estimate the potential revenue. Design An econometric and comparative risk assessment modelling study. Setting The UK. Participants The UK adult population. Interventions Two tax scenarios are modelled: (A) a tax of £2.72/tonne carbon dioxide equivalents (tCO2e)/100 g product applied to all food and drink groups with above average GHG emissions. (B) As with scenario (A) but food groups with emissions below average are subsidised to create a tax neutral scenario. Outcome measures Primary outcomes are change in UK population mortality from chronic diseases following the implementation of each taxation strategy, the change in the UK GHG emissions and the predicted revenue. Secondary outcomes are the changes to the micronutrient composition of the UK diet. Results Scenario (A) results in 7770 (95% credible intervals 7150 to 8390) deaths averted and a reduction in GHG emissions of 18 683 (14 665to 22 889) ktCO2e/year. Estimated annual revenue is £2.02 (£1.98 to £2.06) billion. Scenario (B) results in 2685 (1966 to 3402) extra deaths and a reduction in GHG emissions of 15 228 (11 245to 19 492) ktCO2e/year. Conclusions Incorporating the societal cost of GHG into the price of foods could save 7770 lives in the UK each year, reduce food-related GHG emissions and generate substantial tax revenue. The revenue neutral scenario (B) demonstrates that sustainability and health goals are not always aligned. Future work should focus on investigating the health impact by population subgroup and on designing fiscal strategies to promote both sustainable and healthy diets.
Resumo:
Grazing systems represent a substantial percentage of the global anthropogenic flux of nitrous oxide (N2O) as a result of nitrogen addition to the soil. The pool of available carbon that is added to the soil from livestock excreta also provides substrate for the production of carbon dioxide (CO2) and methane (CH4) by soil microorganisms. A study into the production and emission of CO2, CH4 and N2O from cattle urine amended pasture was carried out on the Somerset Levels and Moors, UK over a three-month period. Urine-amended plots (50 g N m−2) were compared to control plots to which only water (12 mg N m−2) was applied. CO2 emission peaked at 5200 mg CO2 m−2 d−1 directly after application. CH4 flux decreased to −2000 μg CH4 m−2 d−1 two days after application; however, net CH4 flux was positive from urine treated plots and negative from control plots. N2O emission peaked at 88 mg N2O m−2 d−1 12 days after application. Subsurface CH4 and N2O concentrations were higher in the urine treated plots than the controls. There was no effect of treatment on subsurface CO2 concentrations. Subsurface N2O peaked at 500 ppm 12 days after and 1200 ppm 56 days after application. Subsurface NO3− concentration peaked at approximately 300 mg N kg dry soil−1 12 days after application. Results indicate that denitrification is the key driver for N2O release in peatlands and that this production is strongly related to rainfall events and water-table movement. N2O production at depth continued long after emissions were detected at the surface. Further understanding of the interaction between subsurface gas concentrations, surface emissions and soil hydrological conditions is required to successfully predict greenhouse gas production and emission.
Resumo:
A large volcanic eruption might constitute a climate emergency, significantly altering global temperature and precipitation for several years. Major future eruptions will occur, but their size or timing cannot be predicted. We show, for the first time, that it may be possible to counteract these climate effects through deliberate emissions of short-lived greenhouse gases, dampening the abrupt impact of an eruption. We estimate an emission pathway countering a hypothetical eruption 3 times the size of Mount Pinatubo in 1991. We use a global climate model to evaluate global and regional responses to the eruption, with and without counteremissions. We then raise practical, financial, and ethical questions related to such a strategy. Unlike the more commonly discussed geoengineering to mitigate warming from long-lived greenhouse gases, designed emissions to counter temporary cooling would not have the disadvantage of needing to be sustained over long periods. Nevertheless, implementation would still face significant challenges.
Resumo:
The Emissions around the M25 motorway (EM25) campaign took place over the megacity of London in the United Kingdom in June 2009 with the aim of characterising trace gas and aerosol composition and properties entering and emitted from the urban region. It featured two mobile platforms, the UK BAe-146 Facility for Airborne Atmospheric Measurements (FAAM) research aircraft and a ground-based mobile lidar van, both travelling in circuits around London, roughly following the path of the M25 motorway circling the city. We present an overview of findings from the project, which took place during typical UK summertime pollution conditions. Emission ratios of volatile organic compounds (VOCs) to acetylene and carbon monoxide emitted from the London region were consistent with measurements in and downwind of other large urban areas and indicated traffic and associated fuel evaporation were major sources. Sub-micron aerosol composition was dominated by secondary species including sulphate (24% of sub-micron mass in the London plume and 29% in the non-plume regional aerosol), nitrate (24% plume; 20% regional) and organic aerosol (29% plume; 31% regional). The primary sub-micron aerosol emissions from London were minor compared to the larger regional background, with only limited increases in aerosol mass in the urban plume compared to the background (~12% mass increase on average). Black carbon mass was the major exception and more than doubled in the urban plume, leading to a decrease in the single scattering albedo from 0.91 in the regional aerosol to 0.86 in the London plume, on average. Our observations indicated that regional aerosol plays a major role on aerosol concentrations around London, at least during typical summertime conditions, meaning future efforts to reduce PM levels in London must account for regional as well as local aerosol sources.
Resumo:
We assess the roles of long-lived greenhouse gases and ozone depletion in driving meridional surface pressure gradients in the southern extratropics; these gradients are a defining feature of the Southern Annular Mode. Stratospheric ozone depletion is thought to have caused a strengthening of this mode during summer, with increasing long-lived greenhouse gases playing a secondary role. Using a coupled atmosphere-ocean chemistry-climate model, we show that there is cancelation between the direct, radiative effect of increasing greenhouse gases by the also substantial indirect—chemical and dynamical—feedbacks that greenhouse gases have via their impact on ozone. This sensitivity of the mode to greenhouse gas-induced ozone changes suggests that a consistent implementation of ozone changes due to long-lived greenhouse gases in climate models benefits the simulation of this important aspect of Southern Hemisphere climate.
Resumo:
Upper tropospheric and lower stratospheric measurements from the Aura Microwave Limb Sounder (MLS), the Aura High Resolution Dynamics Limb Sounder (HIRDLS), and the Atmospheric Chemistry Experiment-Fourier transform spectrometer (ACE-FTS) are used to present the first global climatological comparison of extratropical, nonpolar trace gas distributions in double-tropopause (DT) and single-tropopause (ST) regions. Stratospheric tracers, O3, HNO3, and HCl, have lower mixing ratios ∼2–8 km above the primary (lowermost) tropopause in DT than in ST regions in all seasons, with maximum Northern Hemisphere (NH) differences near 50% in winter and 30% in summer. Southern Hemisphere winter differences are somewhat smaller, but summer differences are similar in the two hemispheres. H2O in DT regions of both hemispheres shows strong negative anomalies in November through February and positive anomalies in July through October, reflecting the strong seasonal cycle in H2O near the tropical tropopause. CO and other tropospheric tracers examined have higher DT than ST values 2–7 km above the primary tropopause, with the largest differences in winter. Large DT-ST differences extend to high NH latitudes in fall and winter, with longitudinal maxima in regions associated with enhanced wave activity and subtropical jet variations. Results for O3 and HNO3 agree closely between MLS and HIRDLS, and differences from ACE-FTS are consistent with its sparse and irregular midlatitude sampling. Consistent signatures in climatological trace gas fields provide strong evidence that transport from the tropical upper troposphere into the layer between double tropopauses is an important pathway for stratosphere-troposphere exchange.
Resumo:
An empirical nucleophilicity index based on the gas-phase ionization potentials has been recently shown to be useful categorizing and settling the nucleophilicity power of a series of captodative ethylenes reacting in cycloaddition reactions (L.R. Domingo, E. Chamorro, P. Perez, Journal of Organic Chemistry 73 (2008) 4615-4624). In the present work, the applicability of such model is tested within a broader series of substituted alkenes, substituted aromatic compounds and simple nucleophilic molecules. This index obtained within a Koopman`s theorem framework has been evaluated here in both gas and solution phases for several well-known nucleophiles. These results are found to be linearly correlated. Finally, the feasibility of the predictive character of this index has been discussed in comparison to the available experimental nucleophilicities of some amines in water. These results further support and validate the usefulness of such approximation in the modeling of the global nucleophilicity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The time evolution of the out-of-equilibrium Mott insulator is investigated numerically through calculations of space-time-resolved density and entropy profiles resulting from the release of a gas of ultracold fermionic atoms from an optical trap. For adiabatic, moderate and sudden switching-off of the trapping potential, the out-of-equilibrium dynamics of the Mott insulator is found to differ profoundly from that of the band insulator and the metallic phase, displaying a self-induced stability that is robust within a wide range of densities, system sizes and interaction strengths. The connection between the entanglement entropy and changes of phase, known for equilibrium situations, is found to extend to the out-of-equilibrium regime. Finally, the relation between the system`s long time behavior and the thermalization limit is analyzed. Copyright (C) EPLA, 2011
Resumo:
Amazonian oils and fats display unique triacylglycerol (TAG) profiles and, because of their economic importance as renewable raw materials and use by the cosmetic and food industries, are often subject to adulteration and forgery. Representative samples of these oils (andiroba, Brazil nut, buriti, and passion fruit) and fats (cupuacu, murumuru, and ucuba) were characterized without pre-separation or derivatization via dry (solvent-free) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Characteristic profiles of TAG were obtained for each oil and tat. Dry MALDI-TOF MS provides typification and direct and detailed information, via TAG profiles, of their variable combinations of fatty acids. A database from spectra could be developed and may be used for their fast and reliable typification, application screening, and quality control.
Resumo:
In this work, a CE equipment, online hyphenated to an IT MS analyzer by a linear sheath liquid interface promoting ESI, was used to develop a method for quantitative determination of amino acids. Under appropriate conditions (BGE composition, 0.8% HCOOH, 20% CH(3)OH; sheath liquid composition, 0.8% HCOOH, 60% methanol; V(ESI), +4.50 W), analytical curves of all amino acids from 3 to 80 mg/L were recorded presenting acceptable linearity (r > 0.99). LODs in the range of 16-172 mu mol/L were obtained. BSA, a model protein, was submitted to different hydrolysis procedures (classical acid and basic, and catalyzed by the H(+) form of a cation exchanger resin) and its amino acid profiles determined. In general, the resin-mediated hydrolysis yields were overall similar or better than those obtained by classical acid or basic hydrolysis. The resulting experimental-to-theoretical BSA concentration ratios served as correction factors for the quantitation of amino acids in Brazil nut resin generated hydrolysates.
Resumo:
The iso-alpha-acids or isohumulones are the major contributors to the bitter taste of beer, and it is well-recognized that they are degraded during beer aging. In particular, the trans-isohumulones seem to be less stable than the cis-isohumulones. The major radical identified in beer is the 1-hydroxyethyl radical; however, the reactivity between this radical and the isohumulones has not been reported until now. Therefore, we studied the reactivity of isohumulones toward the 1-hydroxyethyl radical through a competitive kinetic approach. It was observed that both cis- and trans-isohumulones and dihydroisohumulones are decomposed in the presence of 1-hydroxyethyl radicals, while the reactivities are comparable. On the other hand, the tetrahydroisohumulones did not react with 1-hydroxyethyl radicals. The apparent second-order rate constants for the reactions between the 1-hydroxyethyl radical and these compounds were determined by electron paramagnetic resonance (EPR) spectroscopy and electrospray ionization-tandem mass spectrometry [ESI(+)-MS/MS]. It follows that degradation of beer bitter acids is highly influenced by the presence of 1-hydroxyethyl radicals. The reaction products were detected by liquid chromatography electrospray ionization-ion trap-tandem mass spectrometry (LC-ESI-IT-MS/MS), and the formation of oxidized derivatives of the isohumulones was confirmed. These data help to understand the mechanism of beer degradation upon aging.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To evaluate the participation of the larynx and cervical trachea in conditioning inspired gases, we randomly allocated 16 mixed-breed dogs to two groups: group TT (tracheal tube; n = 8) and group LMA (laryngeal mask airway; n = 8). The dogs were anesthetized with pentobarbital sodium and mechanically ventilated for 3 hours. The parameters studied were temperature and absolute humidities of ambient, inhaled, and tracheal air. There was a small increase in tracheal air temperature compared to inhaled air temperature, but no significant difference between groups. The absolute humidity of tracheal air was greater in group LMA than in group TT (23 mg H2O center dot L-1 and 14 mg H2O center dot L-1, respectively; p < .0001). The difference in absolute humidity between the tracheal air and the inhaled air was higher in group LMA at all times (p < .0001). We conclude that the larynx and cervical trachea of the dog participate in humidification and heating of inhaled air by means of air contact with mucosa in this airway segment.