964 resultados para Inversion symmetry
Resumo:
Modelling of disorder in organic crystals is highly desirable since it would allow thermodynamic stabilities and other disorder-sensitive properties to be estimated for such systems. Two disordered organic molecular systems are modeled using a symmetry-adapted ensemble approach, in which the disordered system is treated as an ensemble of the configurations of a supercell with respect to substitution of one disorder component for another. Computation time is kept manageable by performing calculations only on the symmetrically inequivalent configurations. Calculations are presented on a substitutionally disordered system, the dichloro/dibromobenzene solid solution, and on an orientationally disordered system, eniluracil, and the resultant free energies, disorder patterns, and system properties are discussed. The results are found to be in agreement with experiment following manual removal of physically implausible configurations from ensemble averages, highlighting the dangers of a completely automated approach to organic crystal thermodynamics which ignores the barriers to equilibration once the crystal has been formed.
Resumo:
Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method then it is equivalent to ±13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.
Resumo:
FeM2X4 spinels, where M is a transition metal and X is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. We present here a computational study of the inversion thermodynamics and the electronic structure of these (thio)spinels for M = Cr, Mn, Co, Ni, using calculations based on the density functional theory with on-site Hubbard corrections (DFT+U). The analysis of the configurational free energies shows that different behaviour is expected for the equilibrium cation distributions in these structures: FeCr2X4 and FeMn2S4 are fully normal, FeNi2X4 and FeCo2S4 are intermediate, and FeCo2O4 and FeMn2O4 are fully inverted. We have analyzed the role played by the size of the ions and by the crystal field stabilization effects in determining the equilibrium inversion degree. We also discuss how the electronic and magnetic structure of these spinels is modified by the degree of inversion, assuming that this could be varied from the equilibrium value. We have obtained electronic densities of states for the completely normal and completely inverse cation distribution of each compound. FeCr2X4, FeMn2X4, FeCo2O4 and FeNi2O4 are half-metals in the ferrimagnetic state when Fe is in tetrahedral positions. When M is filling the tetrahedral positions, the Cr-containing compounds and FeMn2O4 are half-metallic systems, while the Co and Ni spinels are insulators. The Co and Ni sulfide counterparts are metallic for any inversion degree together with the inverse FeMn2S4. Our calculations suggest that the spin filtering properties of the FeM2X4 (thio)spinels could be modified via the control of the cation distribution through variations in the synthesis conditions.
Resumo:
Understanding the interplay between intrinsic molecular chirality and chirality of the bonding footprint is crucial in exploiting enantioselectivity at surfaces. As such, achiral glycine and chiral alanine are the most obvious candidates if one is to study this interplay on different surfaces. Here, we have investigated the adsorption of glycine on Cu{311} using reflection-absorption infrared spectroscopy, low-energy electron diffraction, temperature-programmed desorption and first-principles density-functional theory. This combination of techniques has allowed us to accurately identify the molecular conformations present under different conditions, and discuss the overlayer structure in the context of the possible bonding footprints. We have observed coverage-dependent local symmetry breaking, with three-point bonded glycinate moieties forming an achiral arrangement at low coverages, and chirality developing with the presence of two-point bonded moieties at high coverages. Comparison with previous work on the self-assembly of simple amino acids on Cu{311} and the structurally-similar Cu{110} surface has allowed us to rationalise the different conditions necessary for the formation of ordered chiral overlayers.
Resumo:
Although estimation of turbulent transport parameters using inverse methods is not new, there is little evaluation of the method in the literature. Here, it is shown that extended observation of the broad scale hydrography by Argo provides a path to improved estimates of regional turbulent transport rates. Results from a 20 year ocean state estimate produced with the ECCO v4 non-linear inverse modeling framework provide supporting evidence. Turbulent transport parameter maps are estimated under the constraints of fitting the extensive collection of Argo profiles collected through 2011. The adjusted parameters dramatically reduce misfits to in situ profiles as compared with earlier ECCO solutions. They also yield a clear reduction in the model drift away from observations over multi-century long simulations, both for assimilated variables (temperature and salinity) and independent variables (bio-geochemical tracers). Despite the minimal constraints imposed specifically on the estimated parameters, their geography is physically plausible and exhibits close connections with the upper ocean ocean stratification as observed by Argo. The estimated parameter adjustments furthermore have first order impacts on upper-ocean stratification and mixed layer depths over 20 years. These results identify the constraint of fitting Argo profiles as an effective observational basis for regional turbulent transport rates. Uncertainties and further improvements of the method are discussed.
Genetic algorithm inversion of the average 1D crustal structure using local and regional earthquakes
Resumo:
Knowing the best 1D model of the crustal and upper mantle structure is useful not only for routine hypocenter determination, but also for linearized joint inversions of hypocenters and 3D crustal structure, where a good choice of the initial model can be very important. Here, we tested the combination of a simple GA inversion with the widely used HYPO71 program to find the best three-layer model (upper crust, lower crust, and upper mantle) by minimizing the overall P- and S-arrival residuals, using local and regional earthquakes in two areas of the Brazilian shield. Results from the Tocantins Province (Central Brazil) and the southern border of the Sao Francisco craton (SE Brazil) indicated an average crustal thickness of 38 and 43 km, respectively, consistent with previous estimates from receiver functions and seismic refraction lines. The GA + HYPO71 inversion produced correct Vp/Vs ratios (1.73 and 1.71, respectively), as expected from Wadati diagrams. Tests with synthetic data showed that the method is robust for the crustal thickness, Pn velocity, and Vp/Vs ratio when using events with distance up to about 400 km, despite the small number of events available (7 and 22, respectively). The velocities of the upper and lower crusts, however, are less well constrained. Interestingly, in the Tocantins Province, the GA + HYPO71 inversion showed a secondary solution (local minimum) for the average crustal thickness, besides the global minimum solution, which was caused by the existence of two distinct domains in the Central Brazil with very different crustal thicknesses. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A theory of bifurcation equivalence for forced symmetry breaking bifurcation problems is developed. We classify (O(2), 1) problems of corank 2 of low codimension and discuss examples of bifurcation problems leading to such symmetry breaking.
Resumo:
We show that the S parameter is not finite in theories of electroweak symmetry breaking in a slice of anti-de Sitter five-dimensional space, with the light fermions localized in the ultraviolet. We compute the one-loop contributions to S from the Higgs sector and show that they are logarithmically dependent on the cutoff of the theory. We discuss the renormalization of S, as well as the implications for bounds from electroweak precision measurements on these models. We argue that, although in principle the choice of renormalization condition could eliminate the S parameter constraint, a more consistent condition would still result in a large and positive S. On the other hand, we show that the dependence on the Higgs mass in S can be entirely eliminated by the renormalization procedure, making it impossible in these theories to extract a Higgs mass bound from electroweak precision constraints.
Resumo:
We discuss the applicability, within the random matrix theory, of perturbative treatment of symmetry breaking to the experimental data on the flip symmetry breaking in quartz crystal. We found that the values of the parameter that measures this breaking are different for the spacing distribution as compared to those for the spectral rigidity. We consider both two-fold and three-fold symmetries. The latter was found to account better for the spectral rigidity than the former. Both cases, however, underestimate the experimental spectral rigidity at large L. This discrepancy can be resolved if an appropriate number of eigenfrequencies is considered to be missing in the sample. Our findings are relevant for symmetry violation studies in general. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The fact that the resistance of propagating electrons in solids depends on their spin orientation has led to a new field called spintronics. With the parallel advances in nanoscience, it is now possible to talk about nanospintronics. Many works have focused on the study of charge transport along nanosystems, such as carbon nanotubes, graphene nanoribbons, or metallic nanowires, and spin dependent transport properties at this scale may lead to new behaviors due to the manipulation of a small number of spins. Metal nanowires have been studied as electric contacts where atomic and molecular insertions can be constructed. Here we describe what might be considered the ultimate spin device, namely, a Au thin nanowire with one Co atom bridging its two sides. We show that this system has strong spin dependent transport properties and that its local symmetry can dramatically change them, leading to a significant spin polarized conductance.
Resumo:
Layer-by-layer (LBL) films of nickel tetrasulfonated phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) have been prepared, whose surface charge has been evaluated using surface potential measurements. From adsorption kinetics results, we obtained the immersion time of similar to 40 s, which was used to assemble layers of NiTsPc. The effect of gold (Au) and aluminum (Al) electrodes on the charge behavior was examined. We found that the surface potential (i.e. surface charge) was inverted each time a layer of PAH was alternated with another of NiTsPc molecules for the two types of electrodes, which was attributed to charge overcompensation between positive charges of PAH molecules, and negative charges from NiTsPc molecules. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The reconstruction of Extensive Air Showers (EAS) observed by particle detectors at the ground is based on the characteristics of observables like the lateral particle density and the arrival times. The lateral densities, inferred for different EAS components from detector data, are usually parameterised by applying various lateral distribution functions (LDFs). The LDFs are used in turn for evaluating quantities like the total number of particles or the density at particular radial distances. Typical expressions for LDFs anticipate azimuthal symmetry of the density around the shower axis. The deviations of the lateral particle density from this assumption arising from various reasons are smoothed out in the case of compact arrays like KASCADE, but not in the case of arrays like Grande, which only sample a smaller part of the azimuthal variation. KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located at the Karlsruhe Institute of Technology (Campus North), Germany. The lateral distributions of charged particles are deduced from the basic information provided by the Grande scintillators - the energy deposits - first in the observation plane, then in the intrinsic shower plane. In all steps azimuthal dependences should be taken into account. As the energy deposit in the scintillators is dependent on the angles of incidence of the particles, azimuthal dependences are already involved in the first step: the conversion from the energy deposits to the charged particle density. This is done by using the Lateral Energy Correction Function (LECF) that evaluates the mean energy deposited by a charged particle taking into account the contribution of other particles (e.g. photons) to the energy deposit. By using a very fast procedure for the evaluation of the energy deposited by various particles we prepared realistic LECFs depending on the angle of incidence of the shower and on the radial and azimuthal coordinates of the location of the detector. Mapping the lateral density from the observation plane onto the intrinsic shower plane does not remove the azimuthal dependences arising from geometric and attenuation effects, in particular for inclined showers. Realistic procedures for applying correction factors are developed. Specific examples of the bias due to neglecting the azimuthal asymmetries in the conversion from the energy deposit in the Grande detectors to the lateral density of charged particles in the intrinsic shower plane are given. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
New U-Pb zircon and (40)Ar-(39)Ar K-feldspar data are presented for syn-sedimentary volcanogenic rocks from the Neoproterozoic Marica Formation, located in the southern Brazilian shield. Seven (of nine) U-Pb sensitive high-resolution ion microprobe analyses of zircons from pyroclastic cobbles yield an age of 630.2 +/- 3.4 Ma (2 sigma), interpreted as the age of syn-sedimentary volcanism, and thus of the deposition itself. This result indicates that the Marica Formation was deposited during the main collisional phase (640-620 Ma) of the Brasiliano II orogenic system, probably as a forebulge or back-bulge, craton-derived foreland succession. Thus, this unit is possibly correlative of younger portions of the Porongos, Brusque, Passo Feio, Abapa (Itaiacoca) and Lavalleja (Fuente del Puma) metamorphic complexes. Well-defined, step-heating (40)Ar-(39)Ar K-feldspar plateau ages obtained from volcanogenic beds and pyroclastic cobbles of the lower and upper successions of the Marica Formation yielded 507.3 +/- 1.8 Ma and 506.7 +/- 1.4 Ma (2 sigma), respectively. These data are interpreted to reflect total isotopic resetting during deep burial and thermal effects related to magmatic events. Late Middle Cambrian cooling below ca. 200 degrees C, probably related to uplift, is tentatively associated with intraplate effects of the Rio Doce and/or Pampean orogenies (Brasiliano III system). In the southern Brazilian shield, these intraplate stresses are possibly related to the dominantly extensional opening of a rift or a pull-apart basin, where sedimentary rocks of the Camaqua Group (Santa Barbara and Guaritas Formations) accumulated.
Resumo:
We investigate the possibility of interpreting the degeneracy of the genetic code, i.e., the feature that different codons (base triplets) of DNA are transcribed into the same amino acid, as the result of a symmetry breaking process, in the context of finite groups. In the first part of this paper, we give the complete list of all codon representations (64-dimensional irreducible representations) of simple finite groups and their satellites (central extensions and extensions by outer automorphisms). In the second part, we analyze the branching rules for the codon representations found in the first part by computational methods, using a software package for computational group theory. The final result is a complete classification of the possible schemes, based on finite simple groups, that reproduce the multiplet structure of the genetic code. (C) 2010 Elsevier Ltd. All rights reserved.