902 resultados para Intergovernmental Panel on Climate Change


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the projected future impact of climate change has been analyzed for the quality of living conditions of the European terrestrial vertebrates (amphibians, reptiles, birds, mammals) in the Carpathian Basin. According to the climate scenarios, warmer and drier climatic conditions are likely to occur in the Carpathian Basin by end of this century. Simultaneous analysis of climate parameters, climate simulations and animal range datasets enables us to evaluate the vulnerability of different European species to regional warming and climate change. The spatial climate analogy technique is used to analyze the estimated rapid change of the wild animals’ habitats and their northward migration. For the reference climate data of Debrecen is considered, and three spatial analogue regions are compared. The results suggest that generally a significant decline in habitats is very likely for most of the analyzed animal groups by the end of the 21st century. The largest rate of decline is estimated for birds. However, living conditions for reptiles may improve in the future due to the warmer and drier climatic conditions, which are favourable for these species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global average temperature has increased and precipitation pattern has altered over the past 100 years due to increases in greenhouse gases. These changes will alter numerous site factors and biochemical processes of vegetative communities such as nutrient and water availability, permafrost thawing, fire regime, biotic interactions and invasion. As a consequence, climate change is expected to alter distribution ranges of many species and communities as well as boundaries of biomes. Shifting of species and vegetation zones northwards and upwards in elevation has already been observed. Besides, several experiments have been conducted and simulations have been run all over the world in order to predict possible range shifts and ecological risks. In this paper, we review literature available in Web of Science on Europe and boreal Eurasia and give an overview of observed and predicted changes in vegetation in these regions. The main trends include advance of the tree line, reduction of the alpine vegetation belt, drought risk, forest diebacks, a shift from coniferous forests to deciduous forests and invasion. It is still controversial if species migration will be able to keep pace with climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of climate change on the potential distribution of four Mediterranean pine species – Pinus brutia Ten., Pinus halepensis Mill., Pinus pinaster Aiton, and Pinus pinea L. – was studied by the Climate Envelope Model (CEM) to examine whether these species are suitable for the use as ornamental plants without frost protection in the Carpathian Basin. The model was supported by EUFORGEN digital area database (distribution maps), ESRI ArcGIS 10 software’s Spatial Analyst module (modeling environment), PAST (calibration of the model with statistical method), and REMO regional climate model (climatic data). The climate data were available in a 25 km resolution grid for the reference period (1961–1990) and two future periods (2011–2040, 2041–2070). The regional climate model was based on the IPCC SRES A1B scenario. While the potential distribution of P. brutia was not predicted to expand remarkably, an explicit shift of the distribution of the other three species was shown. Northwestern African distribution segments seem to become abandoned in the future. Current distribution of P. brutia may be highly endangered by the climate change. P. halepensis in the southern part and P. pinaster in the western part of the Carpathian Basin may find suitable climatic conditions in the period of 2041–2070.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the years 2004 and 2005, we collected samples of phytoplankton, zooplankton, and macroinvertebrates in an artificial small pond in Budapest (Hungary). We set up a simulation model predicting the abundances of the cyclopoids, Eudiaptomus zachariasi, and Ischnura pumilio by considering only temperature and the abundance of population of the previous day. Phytoplankton abundance was simulated by considering not only temperature but the abundances of the three mentioned groups. When we ran the model with the data series of internationally accepted climate change scenarios, the different outcomes were discussed. Comparative assessment of the alternative climate change scenarios was also carried out with statistical methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmaniasis is one of the most important emerging vector-borne diseases in Western Eurasia. Although winter minimum temperatures limit the present geographical distribution of the vector Phlebotomus species, the heat island effect of the cities and the anthropogenic heat emission together may provide the appropriate environment for the overwintering of sand flies. We studied the climate tempering effect of thermal bridges and the heat island effect in Budapest, Hungary. Thermal imaging was used to measure the heat surplus of heat bridges. The winter heat island effect of the city was evaluated by numerical analysis of the measurements of the Aqua sensor of satellite Terra. We found that the surface temperature of thermal bridges can be at least 3-7 °C higher than the surrounding environment. The heat emission of thermal bridges and the urban heat island effect together can cause at least 10 °C higher minimum ambient temperature in winter nights than the minimum temperature of the peri-urban areas. This milder micro-climate of the built environment can enable the potential overwintering of some important European Phlebotomus species. The anthropogenic heat emission of big cities may explain the observed isolated northward populations of Phlebotomus ariasi in Paris and Phlebotomus neglectus in the agglomeration of Budapest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: In the Mediterranean areas of Europe, leishmanisasis is one of the most emerging vector-borne diseases. Members of genus Phlebotomus are the primary vectors of the genus Leishmania. To track the human health effect of climate change it is a very important interdisciplinary question to study whether the climatic requirements and geographical distribution of the vectors of human pathogen organisms correlate with each other. Our study intended to explore the potential effects of ongoing climate change, in particular through a potential upward altitudinal and latitudinal shift of the distribution of the parasite Leishmania infantum, its vectors Phlebotomus ariasi, P. neglectus, P. perfiliewi, P. perniciosus, and P. tobbi, and some other sandfly species: P. papatasi, P. sergenti, and P. similis. Methods: By using a climate envelope modelling (CEM) method we modelled the current and future (2011-2070) potential distribution of 8 European sandfly species and L. infantum based on the current distribution using the REMO regional climate model. Results: We found that by the end of the 2060’s most parts of Western Europe can be colonized by sandfly species, mostly by P. ariasi and P. pernicosus. P. ariasi showed the greatest potential northward expansion. For all the studied vectors of L. infantum the entire Mediterranean Basin and South-Eastern Europe seemed to be suitable. L. infantum can affect the Eastern Mediterranean, without notable northward expansion. Our model resulted 1 to 2 months prolongation of the potentially active period of P. neglectus P. papatasi and P. perniciosus for the 2060’s in Southern Hungary. Conclusion: Our findings confirm the concerns that leishmanisais can become a real hazard for the major part of the European population to the end of the 21th century and the Carpathian Basin is a particularly vulnerable area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change highly impacts on tree growth and also threatens the forest of the karstic terrains. From the 1980s the frequency of decay events of the Pinus nigra Arnold forests showed a marked increase in Hungary. To understanding the vulnerability of Pinus nigra forests to climate change on shallow karstic soils in continental-sub Mediterranean climatic conditions we developed the study of three sampled population in the typical karstic landscape of Veszprém in North Transdanubia. We built our model on non-invasive approach using the annual growth of the individuals. MPI Echam5 climate model and as aridity index the Thornthwaite Agrometeorological Index were used. Our results indicate that soil thickness up to 11 cm has a major influence on the main growth intensity, however, aridity determines the annual growth rate. Our model results showed that the increasing decay frequency in the last decades was a parallel change to the decreasing growth rate of pines. The climate model predicts the similar, increased decay frequency to the presents. Our results can be valid for a wider areas of the periphery of Mediterranean climate zone while the annual-growth based model is a cost-effective and simple method to study the vitality of pine trees in a given area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing threat of global climate change is predicted to have immense influences on ecosystems worldwide, but could be particularly severe to vulnerable wetland environments such as the Everglades. This work investigates the impact global climate change could have on the hydrologic and vegetative makeup of Everglades National Park (ENP) under forecasted emissions scenarios. Using a simple stochastic model of aboveground water levels driven by a fluctuating rainfall input, we link across ENP a location's mean depth and percent time of inundation to the predicted changes in precipitation from climate change. Changes in the hydrologic makeup of ENP are then related to changes in vegetation community composition through the use of relationships developed between two publically available datasets. Results show that under increasing emissions scenarios mean annual precipitation was forecasted to decrease across ENP leading to a marked hydrologic change across the region. Namely, areas were predicted to be shallower in average depth of standing water and inundated less of the time. These hydrologic changes in turn lead to a shift in ENP's vegetative makeup, with xeric vegetative communities becoming more numerous and hydric vegetative communities becoming scarcer. Noticeably, the most widespread of vegetative communities, sawgrass, decreases in abundance under increasing emissions scenarios. These results are an important indicator of the effects climate change may have on the Everglades region and raise important management implications for those seeking to restore this area to its historical hydrologic and vegetative condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasingly erratic flow in the upper reaches of the Mara River, has directed attention to land use change as the major cause of this problem. The semi-distributed hydrological model SWAT and Landsat imagery were utilized in order to 1) map existing land use practices, 2) determine the impacts of land use change on water flux; and 3) determine the impacts of climate change scenarios on the water flux of the upper Mara River. This study found that land use change scenarios resulted in more erratic discharge while climate change scenarios had a more predictable impact on the discharge and water balance components. The model results showed the flow was more sensitive to the rainfall changes than land use changes but land use changes reduce dry season flows which is a major problem in the basin. Deforestation increased the peak flows which translated to increased sediment loading in the Mara River.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements This work was funded by the projects HAR2013-43701-P (Spanish Economy and Competitiveness Ministry) and CGL2010-20672 (Spanish Ministry of Science and Innovation). This research was also partially developed with Xunta de Galicia funding (grants R2014/001 and GPC2014/009). N. Silva-Sánchez is currently supported by a FPU pre-doctoral grant (AP2010-3264) funded by the Spanish Government. We are grateful to Ana Moreno, Mariano Barriendos and Gerardo Benito who kindly provide us data included in Figure 5a. We also want to thank constructive comments from two anonymous reviewers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements This work was funded by the projects HAR2013-43701-P (Spanish Economy and Competitiveness Ministry) and CGL2010-20672 (Spanish Ministry of Science and Innovation). This research was also partially developed with Xunta de Galicia funding (grants R2014/001 and GPC2014/009). N. Silva-Sánchez is currently supported by a FPU pre-doctoral grant (AP2010-3264) funded by the Spanish Government. We are grateful to Ana Moreno, Mariano Barriendos and Gerardo Benito who kindly provide us data included in Figure 5a. We also want to thank constructive comments from two anonymous reviewers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is expected to have wide-ranging impacts on urban areas and creates additional challenges for sustainable development. Urban areas are inextricably linked with climate change, as they are major contributors to it, while also being particularly vulnerable to its impacts. Climate change presents a new challenge to urban areas, not only because of the expected rises in temperature and sea-level, but also the current context of failure to fully address the institutional barriers preventing action to prepare for climate change, or feedbacks between urban systems and agents. Despite the importance of climate change, there are few cities in developing countries that are attempting to address these issues systematically as part of their governance and planning processes. While there is a growing literature on the risks and vulnerabilities related to climate change, as yet there is limited research on the development of institutional responses, the dissemination of relevant knowledge and evaluation of tools for practical planning responses by decision makers at the city level. This thesis questions the dominant assumptions about the capacity of institutions and potential of adaptive planning. It argues that achieving a balance between climate change impacts and local government decision-making capacity is a vital for successful adaptation to the impacts of climate change. Urban spatial planning and wider environmental planning not only play a major role in reducing/mitigating risks but also have a key role in adapting to uncertainty in over future risk. The research focuses on a single province - the biggest city in Vietnam - Ho Chi Minh City - as the principal case study to explore this argument, by examining the linkages between urban planning systems, the structures of governance, and climate change adaptation planning. In conclusion it proposes a specific framework to offer insights into some of the more practical considerations, and the approach emphasises the importance of vertical and horizontal coordination in governance and urban planning.