937 resultados para Interacting constraints
Resumo:
Models with interacting dark energy can alleviate the cosmic coincidence problem by allowing dark matter and dark energy to evolve in a similar fashion. At a fundamental level, these models are specified by choosing a functional form for the scalar potential and for the interaction term. However, in order to compare to observational data it is usually more convenient to use parametrizations of the dark energy equation of state and the evolution of the dark matter energy density. Once the relevant parameters are fitted, it is important to obtain the shape of the fundamental functions. In this paper I show how to reconstruct the scalar potential and the scalar interaction with dark matter from general parametrizations. I give a few examples and show that it is possible for the effective equation of state for the scalar field to cross the phantom barrier when interactions are allowed. I analyze the uncertainties in the reconstructed potential arising from foreseen errors in the estimation of fit parameters and point out that a Yukawa-like linear interaction results from a simple parametrization of the coupling.
Resumo:
A short review of the plethysm technique aiming to its application in finding branching rules for the reduction of an irreducible representation of a group under the restriction to one of its subgroups is given. The algebraic structure of the interacting boson model and some of its extensions is given together with the branching rules needed to classify their basis states, obtained by the use of plethysms. (C) 2003 American Institute of Physics.
Resumo:
Models where the dark matter component of the Universe interacts with the dark energy field have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a function of the dark energy field responsible for the present acceleration of the Universe, and different scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this article we study the impact of a constant coupling delta between dark energy and dark matter on the determination of a redshift dependent dark energy equation of state w(DE)(z) and on the dark matter density today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In particular, we show that the presence of such a coupling increases the tension between the cosmic microwave background data from the analysis of the shift parameter in models with constant w(DE) and SNIa data for realistic values of the present dark matter density fraction. Thus, an independent measurement of the present dark matter density can place constraints on models with interacting dark energy.
Resumo:
The experimental results of Rb-85 Bose-Einstein condensates are analyzed within the mean-field approximation with time-dependent two-body interaction and dissipation due to three-body recombination. We found that the magnitude of the dissipation is consistent with the three-body theory for longer rise times. However, for shorter rise times, it occurs an enhancement of this parameter, consistent with a coherent dimer formation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Here we study the behaviour of the spin 0 sector of the DKP field in spaces with torsion. First we show that in a Riemann-Cartan manifold the DKP field presents an interaction with torsion when minimal coupling is performed, contrary to the behaviour of the KO field, a result that breaks the usual equivalence between the DKP and the KG fields.Next we analyse the case of the Teleparallel Equivalent of General Relativity (Weitzenbock manifold), showing that in this case there is a perfect agreement between KG and DKP fields. The origins of both results are also discussed.
Resumo:
We establish constraints on a general four-fermion contact interaction from precise measurements of electroweak parameters. We compute the one-loop contribution for the leptonic Z width, anomalous magnetic, weak-magnetic, electric and weak dipole moments of leptons in order to extract bounds on the energy scale of these effective interactions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Universe evolution, as described by Friedmann's equations, is determined by source terms fixed by the choice of pressure x energy density equations of state p(p). The usual approach in cosmology considers equations of state accounting only for kinematic terms, ignoring the contribution from the interactions between the particles constituting the source fluid. In this work the importance of these neglected terms is emphasized. A systematic method, based on the statistical mechanics of real fluids, is proposed to include them. A toy model is presented which shows how such interaction terms could be applied to engender significant cosmological effects.
Resumo:
We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg -> H -> W+W- in p (p) over bar collisions at the Fermilab Tevatron Collider at root s = 1.96 TeV. With 4.8 fb(-1) of integrated luminosity analyzed at CDF and 5.4 fb(-1) at D0, the 95% confidence level upper limit on sigma(gg -> H) x B(H -> W+W-) is 1.75 pb at m(H) = 120 GeV, 0.38 pb at m(H) = 165 GeV, and 0.83 pb at m(H) = 200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.
Resumo:
We combine measurements of the top quark pair production cross section in p (p) over bar collisions in the l + jets, ll, and tau l final states ( where l is an electron or muon) at a center of mass energy of root s = 1.96 TeV in 1 fb(-1) of data collected with the D0 detector. For a top quark mass of 170 GeV/c(2), we obtain sigma(t (t) over bar) = 8.18(-0.87)(+0.98) pb in agreement with the theoretical prediction. Based on predictions from higher order quantum chromodynamics, we extract a mass for the top quark from the combined t (t) over bar cross section, consistent with the world average of the top quark mass. In addition, the ratios of t (t) over bar cross sections in different final states are used to set upper limits on the branching fractions B(t -> H(+)b -> tau(+) vb) and B(t -> H(+)b -> c (s) over barb) as a function of the charged Higgs boson mass.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We derive Virasoro constraints for the zero momentum part of the QCD-like partition functions in the sector of topological charge v. The constraints depend on the topological charge only through the combination N-f +betav/2 where the value of the Dyson index beta is determined by the reality type of the fermions. This duality between flavor and topology is inherited by the small-mass expansion of the partition function and all spectral sum rules of inverse powers of the eigenvalues of the Dirac operator. For the special case beta =2 but arbitrary topological charge the Virasoro constraints are solved uniquely by a generalized Kontsevich model with the potential V(X) = 1/X.
Resumo:
Groundwaters from the Guarany aquifer located at the South American continent and sampled at four wells with described geological sections in São Paulo State, Brazil, were chemically and isotopically analysed with two aims: to evaluate the quality of this important hydrological resource and to investigate the possibility of using the natural uranium isotopes U-234 and U-238 as a chronological tool, since the U-234/U-238 activity ratio and dissolved U content data in groundwater systems have generated models for dating purposes.
Resumo:
Laboratory time-scale experiments were conducted on limestone and dolomite gravels from the Mendip Hills area, England, with the purpose of evaluating the release of U-238 and U-234 to different aqueous solutions. The U-234/U-238 activity ratio (AR) lab data were reliable to interpret the field data. The obtained values do not indicate a reduction in the amount of dissolved U and an increase in the AR of the remaining dissolved U as commonly observed for groundwater systems close to redox boundaries. (C) 2000 Elsevier B.V. Ltd. All rights reserved.