899 resultados para Influenza A virus, H1N1 subtype
Resumo:
Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world’s population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of Aedes aegypti mosquitoes from two geographically isolated populations with two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than mosquitoes from an outbreak-prone region, particularly with respect to one dengue strain. These findings suggest recent evolution of population-based differences in vector competence or different historical origins. Future genomic comparisons of these populations could reveal the genetic basis of vector competence and the relative role of selection and stochastic processes in shaping their differences. Lastly, we show the novel finding of a correlation between midgut dengue titer and titer in tissues colonized after dissemination.
Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia
Resumo:
Introduction Dengue is one of the most widespread mosquito-borne diseases in the world. The causative agent, dengue virus (DENV), is primarily transmitted by the mosquito Aedes aegypti, a species that has proved difficult to control using conventional methods. The discovery that A. aegypti transinfected with the wMel strain of Wolbachia showed limited DENV replication led to trial field releases of these mosquitoes in Cairns, Australia as a biocontrol strategy for the virus. Methodology/Principal Findings Field collected wMel mosquitoes that were challenged with three DENV serotypes displayed limited rates of body infection, viral replication and dissemination to the head compared to uninfected controls. Rates of dengue infection, replication and dissemination in field wMel mosquitoes were similar to those observed in the original transinfected wMel line that had been maintained in the laboratory. We found that wMel was distributed in similar body tissues in field mosquitoes as in laboratory ones, but, at seven days following blood-feeding, wMel densities increased to a greater extent in field mosquitoes. Conclusions/Significance Our results indicate that virus-blocking is likely to persist in Wolbachia-infected mosquitoes after their release and establishment in wild populations, suggesting that Wolbachia biocontrol may be a successful strategy for reducing dengue transmission in the field.
Resumo:
Background The epidemiology of dengue in the South Pacific has been characterized by transmission of a single dominant serotype for 3–5 years, with subsequent replacement by another serotype. From 2001 to 2008 only DENV-1 was reported in the Pacific. In 2008, DENV-4 emerged and quickly displaced DENV-1 in the Pacific, except in New Caledonia (NC) where DENV-1 and DENV-4 co-circulated in 2008–2009. During 2012–2013, another DENV-1 outbreak occurred in NC, the third DENV-1 outbreak in a decade. Given that dengue is a serotype-specific immunizing infection, the recurrent outbreaks of a single serotype within a 10-year period was unexpected. Findings This study aimed to inform this phenomenon by examining the phylogenetic characteristics of the DENV-1 viruses in NC and other Pacific islands between 2001 and 2013. As a result, we have demonstrated that NC experienced introductions of viruses from both the Pacific (genotype IV) and South-east Asia (genotype I). Moreover, whereas genotype IV and I were co-circulating at the beginning of 2012, we observed that from the second half of 2012, i.e. during the major DENV-1 outbreak, all analyzed viruses were genotype I suggesting that a genotype switch occurred. Conclusions Repeated outbreaks of the same dengue serotype, as observed in NC, is uncommon in the Pacific islands. Why the earlier DENV-1 outbreaks did not induce sufficient herd immunity is unclear, and likely multifactorial, but the robust vector control program may have played a role by limiting transmission and thus maintaining a large susceptible pool in the population. Keywords: Dengue; Phylogeny; Genotype; Epidemics; New Caledonia
Resumo:
The role of law in managing public health challenges such as influenza pandemics poses special challenges. This article reviews Australian plans in the context of the H1N1 09 experience to assess whether risk management was facilitated or inhibited by the "number" of levels or phases of management, the degree of prescriptive detail for particular phases, the number of plans, the clarity of the relationship between them, and the role of the media. Despite differences in the content and form of the plans at the time of the H1N1 09 emerging pandemic, the article argues that in practice, the plans proved to be responsive and robust bases for managing pandemic risks. It is suggested that this was because the plans proved to be frameworks for coordination rather than prescriptive straitjackets, to be only one component of the regulatory response, and to offer the varied tool box of possible responses, as called for by the theory of responsive regulation. Consistent with the principle of subsidiarity, it is argued that the plans did not inhibit localised responses such as selective school closures or rapid responses to selected populations such as cruise ship passengers.
Resumo:
The swine influenza (H1N1) outbreak in 2009 highlighted the ethical and legal pressures facing general practitioners and health workers in emergency departments in determining the nature and limits of their obligations to their patients and the public. Health workers require guidance on the multiple, overlapping, and at times conflicting legal and ethical duties owed to patients and prospective patients, employers and fellow health workers, and their families. Existing sources of advice on these issues in Australia, by way of statements of medical ethics and other sources of advice, are shown to be in need of further amplification if health workers are to be provided with the certainty and guidance required. Given the complexity of the issues, Australia would therefore benefit from more extensive consultation with the variety of stakeholders involved in these questions if pandemic plans are to smoothly deal with future crises in an ethically and legally sound manner.
Resumo:
Ross River virus (RRV) infection is a debilitating disease which has a significant impact on population health, economic productivity and tourism in Australia. This study examined epidemiological patterns of the RRV disease in Queensland, Australia between January 2001 and December 2011 at a statistical local area level. Spatial-temporal analyses were used to identify the patterns of the disease distribution over time stratified by age, sex and space. The results show that the mean annual incidence was 54 per 100,000 people, with a male: female ratio of 1:1.1. Two space-time clusters were identified: the areas adjacent to Townsville, on the eastern coast of Queensland; and the south east areas. Thus, although public health intervention should be considered across all areas in which RRV occurs, it should specifically focus on these high risk regions, particularly during the summer and autumn to reduce the social and economic impacts of RRV.
Resumo:
Background Southeast Asia has been at the epicentre of recent epidemics of emerging and re-emerging zoonotic diseases. Community-based surveillance and control interventions have been heavily promoted but the most effective interventions have not been identified. Objectives This review evaluated evidence for the effectiveness of community-based surveillance interventions at monitoring and identifying emerging infectious disease; the effectiveness of community-based control interventions at reducing rates of emerging infectious disease; and contextual factors that influence intervention effectiveness. Inclusion criteria Participants Communities in Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Singapore, Thailand and Viet Nam. Types of intervention(s) Non-pharmaceutical, non-vaccine, and community-based surveillance or prevention and control interventions targeting rabies, Nipah virus , dengue, SARS or avian influenza. Types of outcomes Primary outcomes: measures: of infection or disease; secondary outcomes: measures of intervention function. Types of studies Original quantitative studies published in English. Search strategy Databases searched (1980 to 2011): PubMed, CINAHL, ProQuest, EBSCOhost, Web of Science, Science Direct, Cochrane database of systematic reviews, WHOLIS, British Development Library, LILACS, World Bank (East Asia), Asian Development Bank. Methodological quality Two independent reviewers critically appraised studies using standard Joanna Briggs Institute instruments. Disagreements were resolved through discussion. Data extraction A customised tool was used to extract quantitative data on intervention(s), populations, study methods, and primary and secondary outcomes; and qualitative contextual information or narrative evidence about interventions. Data synthesis Data was synthesised in a narrative summary with the aid of tables. Meta-analysis was used to statistically pool quantitative results. Results Fifty-seven studies were included. Vector control interventions using copepods, environmental cleanup and education are effective and sustainable at reducing dengue in rural and urban communities, whilst insecticide spraying is effective in urban outbreak situations. Community-based surveillance interventions can effectively identify avian influenza in backyard flocks, but have not been broadly applied. Outbreak control interventions for Nipah virus and SARS are effective but may not be suitable for ongoing control. Canine vaccination and education is more acceptable than culling, but still fails to reach coverage levels required to effectively control rabies. Contextual factors were identified that influence community engagement with, and ultimately effectiveness of, interventions. Conclusion Despite investment in community-based disease control and surveillance in Southeast Asia, published evidence evaluating interventions is limited in quantity and quality. Nonetheless this review identified a number of effective interventions, and several contextual factors influencing effectiveness. Identification of the best programs will require comparative evidence of effectiveness acceptability, cost-effectiveness and sustainability.
Resumo:
Since the severe acute respiratory syndrome outbreak in 2003, it has been argued that there has been a substantial revision to the norm dictating the behaviour of states in the event of a disease outbreak. This article examines the evolution of the norm to ‘report and verify’ disease outbreaks and evaluates the extent to which this revised norm has begun to guide state behaviour. Examination of select East Asian countries affected by human infections of the H5N1 (avian influenza) virus strain reveals the need to further understand the mutually constitutive relationship between the value attached to prompt reporting against the capacity to report, and how states manage both in fulfilling their duty to report.
Resumo:
Banana bunchy top disease (BBTD) caused by banana bunchy top virus (BBTV) was radioactively detected by nucleic acid hybridization techniques. Results showed that, 32P-labelled insert of pBT338 was hybridized with nucleic acid extracts from BBTV-infected plants from Egypt and Australia but not with those from CMV-infected plants from Egypt. Results revealed that BBTV was greatly detected in midrib, roots, meristem, corm, leaves and pseudostem respectively. BBTV was also detected in symptomless young plants prepared from diseased plant materials grown under tissue culture conditions but was not present in those performed from healthy plant materials. The sensitivity of dot blot and Southern blot hybridizations for the detection of BBTV was also performed for the detection of BBTV.
Resumo:
Current models of HIV-1 morphogenesis hold that newly synthesized viral Gag polyproteins traffic to and assemble at the cell membrane into spherical protein shells. The resulting late-budding structure is thought to be released by the cellular ESCRT machinery severing the membrane tether connecting it to the producer cell. Using electron tomography and scanning transmission electron microscopy, we find that virions have a morphology and composition distinct from late-budding sites. Gag is arranged as a continuous but incomplete sphere in the released virion. In contrast, late-budding sites lacking functional ESCRT exhibited a nearly closed Gag sphere. The results lead us to propose that budding is initiated by Gag assembly, but is completed in an ESCRT-dependent manner before the Gag sphere is complete. This suggests that ESCRT functions early in HIV-1 release-akin to its role in vesicle formation-and is not restricted to severing the thin membrane tether.
Resumo:
Background Detection of outbreaks is an important part of disease surveillance. Although many algorithms have been designed for detecting outbreaks, few have been specifically assessed against diseases that have distinct seasonal incidence patterns, such as those caused by vector-borne pathogens. Methods We applied five previously reported outbreak detection algorithms to Ross River virus (RRV) disease data (1991-2007) for the four local government areas (LGAs) of Brisbane, Emerald, Redland and Townsville in Queensland, Australia. The methods used were the Early Aberration Reporting System (EARS) C1, C2 and C3 methods, negative binomial cusum (NBC), historical limits method (HLM), Poisson outbreak detection (POD) method and the purely temporal SaTScan analysis. Seasonally-adjusted variants of the NBC and SaTScan methods were developed. Some of the algorithms were applied using a range of parameter values, resulting in 17 variants of the five algorithms. Results The 9,188 RRV disease notifications that occurred in the four selected regions over the study period showed marked seasonality, which adversely affected the performance of some of the outbreak detection algorithms. Most of the methods examined were able to detect the same major events. The exception was the seasonally-adjusted NBC methods that detected an excess of short signals. The NBC, POD and temporal SaTScan algorithms were the only methods that consistently had high true positive rates and low false positive and false negative rates across the four study areas. The timeliness of outbreak signals generated by each method was also compared but there was no consistency across outbreaks and LGAs. Conclusions This study has highlighted several issues associated with applying outbreak detection algorithms to seasonal disease data. In lieu of a true gold standard, a quantitative comparison is difficult and caution should be taken when interpreting the true positives, false positives, sensitivity and specificity.
Resumo:
The characterization of human dendritic cell (DC) subsets is essential for the design of new vaccines. We report the first detailed functional analysis of the human CD141(+) DC subset. CD141(+) DCs are found in human lymph nodes, bone marrow, tonsil, and blood, and the latter proved to be the best source of highly purified cells for functional analysis. They are characterized by high expression of toll-like receptor 3, production of IL-12p70 and IFN-beta, and superior capacity to induce T helper 1 cell responses, when compared with the more commonly studied CD1c(+) DC subset. Polyinosine-polycytidylic acid (poly I:C)-activated CD141(+) DCs have a superior capacity to cross-present soluble protein antigen (Ag) to CD8(+) cytotoxic T lymphocytes than poly I:C-activated CD1c(+) DCs. Importantly, CD141(+) DCs, but not CD1c(+) DCs, were endowed with the capacity to cross-present viral Ag after their uptake of necrotic virus-infected cells. These findings establish the CD141(+) DC subset as an important functionally distinct human DC subtype with characteristics similar to those of the mouse CD8 alpha(+) DC subset. The data demonstrate a role for CD141(+) DCs in the induction of cytotoxic T lymphocyte responses and suggest that they may be the most relevant targets for vaccination against cancers, viruses, and other pathogens.
Resumo:
Barmah Forest virus (BFV) disease is the second most common mosquito-borne disease in Australia but few data are available on the risk factors. We assessed the impact of spatial climatic, socioeconomic and ecological factors on the transmission of BFV disease in Queensland, Australia, using spatial regression. All our analyses indicate that spatial lag models provide a superior fit to the data compared to spatial error and ordinary least square models. The residuals of the spatial lag models were found to be uncorrelated, indicating that the models adequately account for spatial and temporal autocorrelation. Our results revealed that minimum temperature, distance from coast and low tide were negatively and rainfall was positively associated with BFV disease in coastal areas, whereas minimum temperature and high tide were negatively and rainfall was positively associated with BFV disease (all P-value.