976 resultados para Industrial design.
Resumo:
The work described in this thesis focuses on the use of a design-of-experiments approach in a multi-well mini-bioreactor to enable the rapid establishments of high yielding production phase conditions in yeast, which is an increasingly popular host system in both academic and industrial laboratories. Using green fluorescent protein secreted from the yeast, Pichia pastoris, a scalable predictive model of protein yield per cell was derived from 13 sets of conditions each with three factors (temperature, pH and dissolved oxygen) at 3 levels and was directly transferable to a 7 L bioreactor. This was in clear contrast to the situation in shake flasks, where the process parameters cannot be tightly controlled. By further optimisating both the accumulation of cell density in batch and improving the fed-batch induction regime, additional yield improvement was found to be additive to the per cell yield of the model. A separate study also demonstrated that improving biomass improved product yield in a second yeast species, Saccharomyces cerevisiae. Investigations of cell wall hydrophobicity in high cell density P. pastoris cultures indicated that cell wall hydrophobin (protein) compositional changes with growth phase becoming more hydrophobic in log growth than in lag or stationary phases. This is possibly due to an increased occurrence of proteins associated with cell division. Finally, the modelling approach was validated in mammalian cells, showing its flexibility and robustness. In summary, the strategy presented in this thesis has the benefit of reducing process development time in recombinant protein production, directly from bench to bioreactor.
Resumo:
Using a hydraulic equipment manufacturing plant as the case study, this work explores the problems of systems integration in manufacturing systems design, stressing the behavioural aspects of motivation and participation, and the constraints involved in the proper consideration of the human sub-system. The need for a simple manageable modular organisation structure is illustrated, where it is shown, by reference to systems theory, how a business can be split into semi-autonomous operating units. The theme is the development of a manufacturing system based on an analysis of the business, its market, product, technology and constraints, coupled with a critical survey of modern management literature to develop an integrated systems design to suit a specific company in the current social environment. Society currently moves through a socio-technical revolution with man seeking higher levels of motivation. The transitory environment from an autocratic/paternalistic to a participative operating mode demands systems parameters only found to a limited extent in manufacturing systems today. It is claimed, that modern manufacturing systems design needs to be based on group working, job enrichment, delegation of decision making and reduced job monotony. The analysis shows how negative aspects of cellular manufacture such as lack of flexibility and poor fixed asset utilisation are relatively irrelevant and misleading in the broader context of the need to come to terms with the social stresses imposed on a company operating in the industrial environment of the present and the immediate future.
Resumo:
Computer-based simulation is frequently used to evaluate the capabilities of proposed manufacturing system designs. Unfortunately, the real systems are often found to perform quite differently from simulation predictions and one possible reason for this is an over-simplistic representation of workers' behaviour within current simulation techniques. The accuracy of design predictions could be improved through a modelling tool that integrates with computer-based simulation and incorporates the factors and relationships that determine workers' performance. This paper explores the viability of developing a similar tool based on our previously published theoretical modelling framework. It focuses on evolving this purely theoretical framework towards a practical modelling tool that can actually be used to expand the capabilities of current simulation techniques. Based on an industrial study, the paper investigates how the theoretical framework works in practice, analyses strengths and weaknesses in its formulation, and proposes developments that can contribute towards enabling human performance modelling in a practical way.
Resumo:
Three novel solar thermal collector concepts derived from the Linear Fresnel Reflector (LFR) are developed and evaluated through a multi-criteria decision-making methodology, comprising the following techniques: Quality Function Deployment (QFD), the Analytical Hierarchy Process (AHP) and the Pugh selection matrix. Criteria are specified by technical and customer requirements gathered from Gujarat, India. The concepts are compared to a standard LFR for reference, and as a result, a novel 'Elevation Linear Fresnel Reflector' (ELFR) concept using elevating mirrors is selected. A detailed version of this concept is proposed and compared against two standard LFR configurations, one using constant and the other using variable horizontal mirror spacing. Annual performance is analysed for a typical meteorological year. Financial assessment is made through the construction of a prototype. The novel LFR has an annual optical efficiency of 49% and increases exergy by 13-23%. Operational hours above a target temperature of 300 C are increased by 9-24%. A 17% reduction in land usage is also achievable. However, the ELFR suffers from additional complexity and a 16-28% increase in capital cost. It is concluded that this novel design is particularly promising for industrial applications and locations with restricted land availability or high land costs. The decision analysis methodology adopted is considered to have a wider potential for applications in the fields of renewable energy and sustainable design. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper discusses the possible contributions from modularity and industrial condominiums towards enhancing environmental performance in the automotive industry. The research described in this study is underpinned by a review of journal articles and books on the topics of: modularity of production systems; green operations practices, and the automotive industry and sustainability. The methodology is based on theoretical analysis of the contribution of the modular production system characteristics used in the automotive industry for Green Operations Practices (GOP). The following GOPs were considered: green buildings, eco design, green supply chains, greener manufacturing, and reverse logistics. The results are theoretical in nature; however, due to the small number of studies that investigate the relationship between modularity and sustainability, this work is relevant to increase knowledge in academic circles and among practitioners in order to understand the possible environmental benefits from modular production systems.
Resumo:
This paper describes a design methodology to achieve optimal performance for a short-stroke single-phase tubular permanent-magnet motor which drives a reciprocating vapor compressor. The steady-state characteristic of the direct-drive linear-motor compressor system is analyzed, an analytical formula for predicting iron loss is presented, and a motor-design procedure which takes into account the effect of compressor loads under nominal operating condition is formulated. It is shown that the motor efficiency can be optimized with respect to two leading dimensional ratios. Experimental results validate the proposed design methodology. Copyright © 2010 IEEE.
Resumo:
This paper presents a simulated genetic algorithm (GA) model of scheduling the flow shop problem with re-entrant jobs. The objective of this research is to minimize the weighted tardiness and makespan. The proposed model considers that the jobs with non-identical due dates are processed on the machines in the same order. Furthermore, the re-entrant jobs are stochastic as only some jobs are required to reenter to the flow shop. The tardiness weight is adjusted once the jobs reenter to the shop. The performance of the proposed GA model is verified by a number of numerical experiments where the data come from the case company. The results show the proposed method has a higher order satisfaction rate than the current industrial practices.
Resumo:
This paper discusses demand and supply chain management and examines how artificial intelligence techniques and RFID technology can enhance the responsiveness of the logistics workflow. This proposed system is expected to have a significant impact on the performance of logistics networks by virtue of its capabilities to adapt unexpected supply and demand changes in the volatile marketplace with the unique feature of responsiveness with the advanced technology, Radio Frequency Identification (RFID). Recent studies have found that RFID and artificial intelligence techniques drive the development of total solution in logistics industry. Apart from tracking the movement of the goods, RFID is able to play an important role to reflect the inventory level of various distribution areas. In today’s globalized industrial environment, the physical logistics operations and the associated flow of information are the essential elements for companies to realize an efficient logistics workflow scenario. Basically, a flexible logistics workflow, which is characterized by its fast responsiveness in dealing with customer requirements through the integration of various value chain activities, is fundamental to leverage business performance of enterprises. The significance of this research is the demonstration of the synergy of using a combination of advanced technologies to form an integrated system that helps achieve lean and agile logistics workflow.
Resumo:
Design verification in the digital domain, using model-based principles, is a key research objective to address the industrial requirement for reduced physical testing and prototyping. For complex assemblies, the verification of design and the associated production methods is currently fragmented, prolonged and sub-optimal, as it uses digital and physical verification stages that are deployed in a sequential manner using multiple systems. This paper describes a novel, hybrid design verification methodology that integrates model-based variability analysis with measurement data of assemblies, in order to reduce simulation uncertainty and allow early design verification from the perspective of satisfying key assembly criteria.
Resumo:
The verification and validation of engineering designs are of primary importance as they directly influence production performance and ultimately define product functionality and customer perception. Research in aspects of verification and validation is widely spread ranging from tools employed during the digital design phase, to methods deployed for prototype verification and validation. This paper reviews the standard definitions of verification and validation in the context of engineering design and progresses to provide a coherent analysis and classification of these activities from preliminary design, to design in the digital domain and the physical verification and validation of products and processes. The scope of the paper includes aspects of system design and demonstrates how complex products are validated in the context of their lifecycle. Industrial requirements are highlighted and research trends and priorities identified. © 2010 CIRP.
Resumo:
This paper explores engineering students' perceptions of developing practical competencies as experienced in their industrial placements. In addition, it discusses the criticisms in the literature on Problem Based Learning, Project Based Learning and Conceive-Design-Implement-Operate in relation to the evaluation of effective learning and teaching during placements. The paper goes on to discuss a study which examines how undergraduate engineering students develop practical competencies during their industrial placements. A phenomenological research approach is adopted using in-depth interviews and document analysis. The research findings from this PhD study will contribute to the knowledge, theory and practice for the students, the industries and the institutions of higher education as students' practical competencies are developed and graduate employability rises. In conclusion, this study explores students' experiences of developing practical competencies during industrial placements. Hence, the study should be able to contribute to a set of evidence-based guidelines for higher education institutions and industry.
Resumo:
High-power and high-voltage gain dc-dc converters are key to high-voltage direct current (HVDC) power transmission for offshore wind power. This paper presents an isolated ultra-high step-up dc-dc converter in matrix transformer configuration. A flyback-forward converter is adopted as the power cell and the secondary side matrix connection is introduced to increase the power level and to improve fault tolerance. Because of the modular structure of the converter, the stress on the switching devices is decreased and so is the transformer size. The proposed topology can be operated in column interleaved modes, row interleaved modes, and hybrid working modes in order to deal with the varying energy from the wind farm. Furthermore, fault-tolerant operation is also realized in several fault scenarios. A 400-W dc-dc converter with four cells is developed and experimentally tested to validate the proposed technique, which can be applied to high-power high-voltage dc power transmission.
Resumo:
Parameter design is an experimental design and analysis methodology for developing robust processes and products. Robustness implies insensitivity to noise disturbances. Subtle experimental realities, such as the joint effect of process knowledge and analysis methodology, may affect the effectiveness of parameter design in precision engineering; where the objective is to detect minute variation in product and process performance. In this thesis, approaches to statistical forced-noise design and analysis methodologies were investigated with respect to detecting performance variations. Given a low degree of process knowledge, Taguchi's methodology of signal-to-noise ratio analysis was found to be more suitable in detecting minute performance variations than the classical approach based on polynomial decomposition. Comparison of inner-array noise (IAN) and outer-array noise (OAN) structuring approaches showed that OAN is a more efficient design for precision engineering. ^
Resumo:
The span of control is the most discussed single concept in classical and modern management theory. In specifying conditions for organizational effectiveness, the span of control has generally been regarded as a critical factor. Existing research work has focused mainly on qualitative methods to analyze this concept, for example heuristic rules based on experiences and/or intuition. This research takes a quantitative approach to this problem and formulates it as a binary integer model, which is used as a tool to study the organizational design issue. This model considers a range of requirements affecting management and supervision of a given set of jobs in a company. These decision variables include allocation of jobs to workers, considering complexity and compatibility of each job with respect to workers, and the requirement of management for planning, execution, training, and control activities in a hierarchical organization. The objective of the model is minimal operations cost, which is the sum of supervision costs at each level of the hierarchy, and the costs of workers assigned to jobs. The model is intended for application in the make-to-order industries as a design tool. It could also be applied to make-to-stock companies as an evaluation tool, to assess the optimality of their current organizational structure. Extensive experiments were conducted to validate the model, to study its behavior, and to evaluate the impact of changing parameters with practical problems. This research proposes a meta-heuristic approach to solving large-size problems, based on the concept of greedy algorithms and the Meta-RaPS algorithm. The proposed heuristic was evaluated with two measures of performance: solution quality and computational speed. The quality is assessed by comparing the obtained objective function value to the one achieved by the optimal solution. The computational efficiency is assessed by comparing the computer time used by the proposed heuristic to the time taken by a commercial software system. Test results show the proposed heuristic procedure generates good solutions in a time-efficient manner.
Design optimization of modern machine drive systems for maximum fault tolerant and optimal operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^