975 resultados para Increasing Velocity
Resumo:
The water circulation of the Egyptian Mediterranean waters was computed during winter and summer seasons using the dynamic method. The reference level was set at the 1000db surface. The results showed that the surface circulation is dominated by the Atlantic water inflow along the North African coast and by two major gyres, the Mersa Matruth anticyclonic gyre and El-Arish cyclonic gyre. The results showed a seasonal reversal of El-Arish gyre, being cyclonic in winter and anticyclonic in summer. El-Arish gyre had not been previously measured. The geostrophic current velocity at the edges of the Mersa Matruth gyre varied between 12.5 and 29.1cm/sec in winter and between 6.5 and 13.1cm/sec in summer. The current velocity reached its maximum values (>40cm/sec) at El-Arish gyre. The current velocity at the two gyres decreased with increasing depth. The North African Current affects the surface waters down to a depth of 100m, and that its mean velocity varies between 6 and 38cm/sec.
Resumo:
Fish culture in deep-water-rice (DWR) environment using net pen and polder systems was evaluated. In net pen rohu and Thai silver barb were cultured, whereas a 5-species combination (rohu, mrigal, common carp, grass carp and Thai silver barb) were cultured with BR3 rice variety and DWR. Boro-fish production system produced 2.8 t/ha of fish and 7.33 t/ha of rice in polder system with 5-species combinations.
Resumo:
This paper describes an experimental investigation of tip clearance flow in a radial inflow turbine. Flow visualization and static pressure measurements were performed. These were combined with hot-wire traverses into the tip gap. The experimental data indicates that the tip clearance flow in a radial turbine can be divided into three regions. The first region is located at the rotor inlet, where the influence of relative casing motion dominates the flow over the tip. The second region is located towards midchord, where the effect of relative casing motion is weakened. Finally a third region exists in the exducer, where the effect of relative casing motion becomes small and the leakage flow resembles the tip flow behaviour in an axial turbine. Integration of the velocity profiles showed that there is little tip leakage in the first part of the rotor because of the effect of scraping. It was found that the bulk of tip leakage flow in a radial turbine passes through the exducer. The mass flow rate, measured at four chordwise positions, was compared with a standard axial turbine tip leakage model. The result revealed the need for a model suited to radial turbines. The hot-wire measurements also indicated a higher tip gap loss in the exducer of the radial turbine. This explains why the stage efficiency of a radial inflow turbine is more affected by increasing the radial clearance than by increasing the axial clearance.
Resumo:
A method was developed for the estimation of the erosive wear of fiber-insulating materials. The wear increases with increasing impact velocity of the particles, increasing impact angle, particle size and the thermal ageing of the fibre elements. Through CFD simulation of the particle-containing gas flow, the erosion depth can be predicted.
Resumo:
A parametric set of velocity distributions has been investigated using a flat plate experiment. Three different diffusion factors and peak velocity locations were tested. These were designed to mimic the suction surfaces of Low Pressure (LP) turbine blades. Unsteady wakes, inherent in real turbomachinery flows, were generated using a moving bar mechanism. A turbulence grid generated a freestream turbulence level that is believed to be typical of LP turbines. Measurements were taken across a Reynolds number range of 50,000-220,000 at three reduced frequencies (0.314, 0.628, 0.942). Boundary layer traverses were performed at the nominal trailing edge using a Laser Doppler Anemometry system and hot-films were used to examine the boundary layer behaviour along the surface. For every velocity distribution tested, the boundary layer separated in the diffusing flow downstream of the peak velocity. The loss production is dominated by the mixing in the reattachment process, mixing in the turbulent boundary layer downstream of reattachment and the effects of the unsteady interaction between the wakes and the boundary layer. A sensitive balance governs the optimal location of peak velocity on the surface. Moving the velocity peak forwards on the blade was found to be increasingly beneficial when bubblegenerated losses are high, i.e. at low Reynolds number, at low reduced frequency and at high levels of diffusion. Copyright © 2008 by ASME.
Resumo:
Like large insects, micro air vehicles operate at low Reynolds numbers O(1; 000 - 10; 000) in a regime characterized by separated flow and strong vortices. The leading-edge vortex has been identified as a significant source of high lift on insect wings, but the conditions required for the formation of a stably attached leading-edge vortex are not yet known. The waving wing is designed to model the translational phase of an insect wing stroke by preserving the unsteady starting and stopping motion as well as three-dimensionality in both wing geometry (via a finite-span wing) and kinematics (via wing rotation). The current study examines the effect of the spanwise velocity gradient on the development of the leading-edge vortex along the wing as well as the effects of increasing threedimensionalityby decreasing wing aspect ratio from four to two. Dye flow visualization and particle image velocimetry reveal that the leading-edge vortices that form on a sliding or waving wing have a very high aspect ratio. The structure of the flow is largely two-dimensional on both sliding and waving wings and there is minimal interaction between the leading-edge vortices and the tip vortex. Significant spanwise flow was observed on the waving wing but not on the sliding wing. Despite the increased three-dimensionality on the aspect ratio 2 waving wing, there is no evidence of an attached leading-edge vortex and the structure of the flow is very similar to that on the higher-aspect-ratio wing and sliding wing. © Copyright 2010.
Resumo:
The use of microbial induced precipitation as a soil improvement technique has been growing in geotechnical domains where ureolytic bacteria that raise the pH of the system and induce calcium carbonate (CaCO3) precipitation are used. For many applications, it is useful to assess the degree of CaCO 3 precipitation by non-destructive testing. This study investigates the feasibility of S-wave velocity measurements to evaluate the amount of calcite precipitation by laboratory testing. Two sets of cemented specimen were tested. The first were samples terminated at different stages of cementation. The second were samples that went through different chemical treatments. These variations were made to find out if these factors would affect the S-wave velocity- cementation relationship. If chemical reaction efficiency was assumed to be constant throughout each test, the relationship between S-wave velocity (Vs) and the amount of CaCO3 precipitation was found to be approximately linear. This correlation between S-wave velocity and calcium carbonate precipitation validates its use as an indicator of the amount of calcite precipitation © 2011 ASCE.
Resumo:
Nisin is a widely used naturally occurring antimicrobial effective against many pathogenic and spoilage microorganisms. It has been proposed that reduced efficacy of nisin in foods can be improved by technologies such as encapsulation to protect it from interferences by food matrix components. The aim of this study was using of spray dried encapsulated nisin with zein in concentration of (0.15 and 0.25 g/kg) and sodium citrate (1.5 and 2.5%) and treatments with both of them to extent the shelf life of filleted trouts packaged by Modified Atmosphere Packaging (45% CO2, 50% N2 ,5% O2) and stored at 4±1 °C for 20 days. Furthermore, to evaluate the antimicrobial efficiency of encapsulated nisin and soudium citrate the trouts fillets was inoculated with Staphylococcus aureus as an index pathogenic bacteria. Assessment of chemical spoilage indexes such as (Proxide value, Thiobarbituric acid, total volatile base nitrogen and pH) , microbial parameters (Total Plate Count, Psychrotrophic count, Lactic acid bacteria count), Staphylococcus aureus cont in treatments which were inoculated with 5 logcfu/g of this bacteria and sensory evaluation of fillets including (smell, color, texture and total acceptability) was carried out in days of 0, 4, 8, 12, 16 and 20. The results revealed that treatment with both exposure of nisin and sodium citrate showed significantly lower chemical spoilage indexes in comparison with controls (vaccum packed and MAP) (P<0.05). Furthermore, (nisin 0.25 g/kg sodium citrate 2.5%) treatment which was exposed to the maximal level used of both materials was significantly the lowest treatment with (Proxide value, Thiobarbituric acid, total volatile base nitrogen and pH) of 9.95 (meq O2/kg) , 1.55 (mgMA/kg), 29.65 (mgN/100g) and 6.65 , respectively and according to the maximal recommended level of this indices , shelf life of fillets in this treatment was esstimated 20 days.The control (vaccum packed) treatment was significantly the highest treatment with (Proxide value, Thiobarbituric acid, total volatile base nitrogen and pH) of 15.17 (meq O2/kg), 3.03 (mgMA/kg), 38.4 (mgN/100g) and 6.95 , respectively and according to the maximal recommended level of this indices , shelf life of fillets in this treatment was estimated 11 days. Also, in microbial point of view (nisin 0.25 g/kg- sodium citrate 2.5%) treatment was the lowest treatment with Total Plate Count, Psychrotrophic count, Lactic acid bacteria count and Staphylococcus aureus count of 6.7, 6.83, 5.25 and 6.04 logcfu/g respectively, and conrol (vaccum packed) treatment was the highest treatment with 9.15, 9.41, 7.7 and 9.01 logcfu/g respectively. According to the lower results of chemical and microbial indices and higher sensory evaluated scores assessed in this research for encapsulated nisin in comparison with free nisin , it was concluded that encapsulation of nisin with zein capsules may improve the efficiency of nisin. The measuremented values of Mass yield, Total solids content of capsules, Encapsulation efficiency, In vitro release kinetics in 200 hour for encapsulated nisin in this study was 49.89, 62, 98.31 and 69% respectively and Encapsulated particle size was lower than 674.21 μm for 90% of particles. As a consequence, nisin , in particular encapsulated nisin, and sodium citrate alone or together with and Modified Atmosphere packaging might be considered as effective tools in preventing the quality degradation of the fillets, resulting in an extension of their shelf life.
Resumo:
Navigated transcranial magnetic stimulation (TMS) combined with diffusion-weighted magnetic resonance imaging (DW-MRI) and tractography allows investigating functional anatomy of the human brain with high precision. Here we demonstrate that working memory (WM) processing of tactile temporal information is facilitated by delivering a single TMS pulse to the middle frontal gyrus (MFG) during memory maintenance. Facilitation was obtained only with a TMS pulse applied to a location of the MFG with anatomical connectivity to the primary somatosensory cortex (S1). TMS improved tactile WM also when distractive tactile stimuli interfered with memory maintenance. Moreover, TMS to the same MFG site attenuated somatosensory evoked responses (SEPs). The results suggest that the TMS-induced memory improvement is explained by increased top-down suppression of interfering sensory processing in S1 via the MFG-S1 link. These results demonstrate an anatomical and functional network that is involved in maintenance of tactile temporal WM. (C) 2009 Elsevier Inc. All rights reserved.