975 resultados para Immune genes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulation of the immune response is an important step in the induction of protective humoral and cellular immunity against pathogens. In this study, we investigated the possibility of using a nanomaterial conjugated with the toll-like receptor (TLR) ligand CpG to modulate the immune response towards the preferred polarity. MgAl-layered double hydroxide (LDH) nanomaterial has a very similar chemical composition to Alum, an FDA approved adjuvant for human vaccination. We used a model antigen, ovalbumin (OVA) to demonstrate that MgAl-LDH had comparable adjuvant activity to Alum, but much weaker inflammation. Conjugation of TLR9 ligand CpG to LDH nanoparticles significantly enhanced the antibody response and promoted a switch from Th2 toward Th1 response, demonstrated by a change in the IgG2a:IgG1 ratio. Moreover, immunization of mice with CpG-OVA-conjugated LDH before challenge with OVA-expressing B16/F10 tumor cells retarded tumor growth. Together, these data indicate that LDH nanomaterial can be used as an immune adjuvant to promote Th1 or Th2 dominant immune responses suitable for vaccination purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. Results: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316bp. Variety IW had the highest SNP frequency (one SNP every 258bp) while KP and NDM had similar frequencies (one SNP every 369bp and 360bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. Conclusions: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango. © 2015 Hoang et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing salinity levels in freshwater and coastal environments caused by sea level rise linked to climate change is now recognized to be a major factor that can impact fish growth negatively, especially for freshwater teleost species. Striped catfish (Pangasianodon hypophthalmus) is an important freshwater teleost that is now widely farmed across the Mekong River Delta in Vietnam. Understanding the basis for tolerance and adaptation to raised environmental salinity conditions can assist the regional culture industry to mitigate predicted impacts of climate change across this region. Attempt of next generation sequencing using the ion proton platform results in more than 174 million raw reads from three tissue libraries (gill, kidney and intestine). Reads were filtered and de novo assembled using a variety of assemblers and then clustered together to generate a combined reference transcriptome. Downstream analysis resulted in a final reference transcriptome that contained 60,585 transcripts with an N50 of 683 bp. This resource was further annotated using a variety of bioinformatics databases, followed by differential gene expression analysis that resulted in 3062 transcripts that were differentially expressed in catfish samples raised under two experimental conditions (0 and 15 ppt). A number of transcripts with a potential role in salinity tolerance were then classified into six different functional gene categories based on their gene ontology assignments. These included; energy metabolism, ion transportation, detoxification, signal transduction, structural organization and detoxification. Finally, we combined the data on functional salinity tolerance genes into a hypothetical schematic model that attempted to describe potential relationships and interactions among target genes to explain the molecular pathways that control adaptive salinity responses in P. hypophthalmus. Our results indicate that P. hypophthalmus exhibit predictable plastic regulatory responses to elevated salinity by means of characteristic gene expression patterns, providing numerous candidate genes for future investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek’s disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek’s disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromomycin A3 (250 mug/kg) suppressed the humoral immune response in rats against sheep erythrocytes when administered 48 h or later after antigenic stimulus. The antibiotic at this dose enhanced immunity when given along with or before antigen administration. The natural heterohemagglutinin levels in rabbits and guinea pigs were not affected by the antibiotic (10 mug/kg per day x 7).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tomato I-3 and I-7 genes confer resistance to Fusarium oxysporum f. sp. lycopersici (Fol) race 3 and were introgressed into the cultivated tomato, Solanum lycopersicum, from the wild relative Solanum pennellii. I-3 has been identified previously on chromosome 7 and encodes an S-receptor-like kinase, but little is known about I-7. Molecular markers have been developed for the marker-assisted breeding of I-3, but none are available for I-7. We used an RNA-seq and single nucleotide polymorphism (SNP) analysis approach to map I-7 to a small introgression of S. pennellii DNA (c. 210 kb) on chromosome 8, and identified I-7 as a gene encoding a leucine-rich repeat receptor-like protein (LRR-RLP), thereby expanding the repertoire of resistance protein classes conferring resistance to Fol. Using an eds1 mutant of tomato, we showed that I-7, like many other LRR-RLPs conferring pathogen resistance in tomato, is EDS1 (Enhanced Disease Susceptibility 1) dependent. Using transgenic tomato plants carrying only the I-7 gene for Fol resistance, we found that I-7 also confers resistance to Fol races 1 and 2. Given that Fol race 1 carries Avr1, resistance to Fol race 1 indicates that I-7-mediated resistance, unlike I-2- or I-3-mediated resistance, is not suppressed by Avr1. This suggests that Avr1 is not a general suppressor of Fol resistance in tomato, leading us to hypothesize that Avr1 may be acting against an EDS1-independent pathway for resistance activation. The identification of I-7 has allowed us to develop molecular markers for marker-assisted breeding of both genes currently known to confer Fol race 3 resistance (I-3 and I-7). Given that I-7-mediated resistance is not suppressed by Avr1, I-7 may be a useful addition to I-3 in the tomato breeder's toolbox.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine Viral Diarrhoea Virus (BVDV) is one of the most serious pathogen, which causes tremendous economic loss to the cattle industry worldwide, meriting the development of improved subunit vaccines. Structural glycoprotein E2 is reported to be a major immunogenic determinant of BVDV virion. We have developed a novel hollow silica vesicles (SV) based platform to administer BVDV-1 Escherichia coli-expressed optimised E2 (oE2) antigen as a nanovaccine formulation. The SV-140 vesicles (diameter 50 nm, wall thickness 6 nm, perforated by pores of entrance size 16 nm and total pore volume of 0.934 cm(3)g(-1)) have proven to be ideal candidates to load oE2 antigen and generate immune response. The current study for the first time demonstrates the ability of freeze-dried (FD) as well as non-FD oE2/SV140 nanovaccine formulation to induce long-term balanced antibody and cell mediated memory responses for at least 6 months with a shortened dosing regimen of two doses in small animal model. The in vivo ability of oE2 (100 mu g)/SV-140 (500 mu g) and FD oE2 (100 mu g)/SV-140 (500 mu g) to induce long-term immunity was compared to immunisation with oE2 (100 mu g) together with the conventional adjuvant Quil-A from the Quillaja saponira (10 mu g) in mice. The oE2/SV-140 as well as the FD oE2/SV-140 nanovaccine generated oE2-specific antibody and cell mediated responses for up to six months post the final second immunisation. Significantly, the cell-mediated responses were consistently high in mice immunised with oE2/SV-140 (1,500 SFU/million cells) at the six-month time point. Histopathology studies showed no morphological changes at the site of injection or in the different organs harvested from the mice immunised with 500 mu g SV-140 nanovaccine compared to the unimmunised control. The platform has the potential for developing single dose vaccines without the requirement of cold chain storage for veterinary and human applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation of the complement and its activation, and activation of effector cells. In addition to this plethora of functions, antibodies are capable of expressing enzymatic activity. Antibodies with catalytic function are a result of the productive interplay between the highly evolved machinery of the immune system and the chemical framework used to induce them (antigens). Catalytic antibodies are immunoglobulins with an ability to catalyze the reactions involving the antigen for which they are specific. Catalytic immunoglobulins of the IgM and IgG isotypes have been detected in the serum of healthy donors. In addition, catalytic immunoglobulins of the IgA isotype have been detected in the milk of healthy mothers. Conversely, antigen-specific hydrolytic antibodies have been reported in a number of inflammatory, autoimmune, and neoplastic disorders. The pathophysiological occurrence and relevance of catalytic antibodies remains a debated issue. Through the description of the hydrolysis of coagulation factor VIII as model target antigen, we propose that catalytic antibodies directed to the coagulation factor VIII may play a beneficial or a deleterious role depending on the immuno-inflammatory condition under which they occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia trachomatis infections can result in the development of serious sequelae such as pelvic inflammatory disease and tubal infertility. In this study, peripheral blood mononuclear cells from women who were undergoing or had recently undergone IVF treatment were cultured ex vivo with C. trachomatis to identify the immune responses associated with women who had serological evidence of a history of Chlamydia infection. Cytokines secreted into the supernatant from the cultures were measured using ELISA, and the level of IL-1β was found to be significantly higher in Chlamydia positive women than Chlamydia negative women. qRT-PCR analysis of the expression of 88 immune-related genes showed trends towards an upregulation of CXCL10, CXCL11 and HLA-A in Chlamydia positive women compared with Chlamydia negative women. These findings support that some women launch a more marked proinflammatory response upon infection with C. trachomatis and this may be associated with why C. trachomatis induces infertility in some infected women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proteinaceous crystal of Bacillus thuringiensis Var thuringiensis was found to enhance humoral immune response in rats and guinea pigs immunised with sheep red blood cells. The enhancement was due to the increased levels of both 19S and 7S antibodies in the sera of the treated animals. A novel synthesis of 7S haemolytic antibodies was observed in case of crystal treated animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-stimulatory signals are essential for the activation of naïve T cells and productive immune response. Naïve T cells receive first, antigen-specific signal through T cell receptor. Co-stimulatory receptors provide the second signal which can be either activating or inhibitory. The balance between signals determines the outcome of an immune response. CD28 is crucial for T cell activation; whereas cytotoxic T lymphocyte associated antigen 4 (CTLA4) mediates critical inhibitory signal. Inducible co-stimulator (ICOS) augments cytokine expression and plays role in immunoglobulin class switching. Programmed cell death 1 (PDCD1) acts as negative regulator of T cell proliferation and cytokine responses. The co-stimulatory receptor pathways are potentially involved in self-tolerance and thus, they provide a promising therapeutic strategy for autoimmune diseases and transplantation. The genes encoding CD28, CTLA4 and ICOS are located adjacently in the chromosome region 2q33. The PDCD1 gene maps further, to the region 2q37. CTLA4 and PDCD1 are associated with the risk of a few autoimmune diseases. There is strong linkage disequilibrium (LD) on the 2q33 region; the whole gene of CD28 exists in its own LD block but CTLA4 and the 5' part of ICOS are within a same LD block. The 3' part of ICOS and PDCD1 are in their own separate LD blocks. Extended haplotypes covering the 2q33 region can be identified. This study focuses on immune related conditions like coeliac disease (CD) which is a chronic inflammatory disease with autoimmune features. Immunoglobulin A deficiency (IgAD) belongs to the group of primary antibody deficiencies characterised by reduced levels of immunoglobulins. IgAD co-occurs often with coeliac disease. Renal transplantation is needed in the end stage kidney diseases. Transplantation causes strong immune response which is tried to suppress with drugs. All these conditions are multifactorial with complex genetic background and multiple environmental factors affecting the outcome. We have screened ICOS for polymorphisms by sequencing the exon regions. We detected 11 new variants and determined their frequencies in Finnish population. We have measured linkage disequilibrium on the 2q33 region in Finnish as well as other European populations and observed conserved haplotypes. We analysed genetic association and linkage of the co-stimulatory receptor gene region aiming to study if it is a common risk locus for immune diseases. The 2q33 region was replicated to be linked to coeliac disease in Finnish population and CTLA4-ICOS haplotypes were found to be associated with CD and IgAD being the first non-HLA risk locus common for CD and immunodeficiencies. We also showed association between ICOS and the outcome of kidney transplantation. Our results suggest new evidence for CTLA4-ICOS gene region to be involved in susceptibility of coeliac disease. The earlier published contradictory association results can be explained by involvement of both CTLA4 and ICOS in disease susceptibility. The pattern of variants acting together rather than a single polymorphism may confer the disease risk. These genes may predispose also to immunodeficiencies as well as decreased graft survival and delayed graft function. Consequently, the present study indicates that like the well established HLA locus, the co-stimulatory receptor genes predispose to variety of immune disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meckel syndrome (MKS, MIM 249000) is a severe developmental disorder that leads to death already in utero or shortly after birth. MKS diagnosis can be established by a careful ultrasound examination already at 11-14 weeks of gestation. The main features of MKS are occipital meningoencephalocele, cystic kidney dysplasia and fibrotic changes of the liver. In addition, polydactyly is frequently reported in the cases. The aim of the study was to characterize the molecular and functional defects in MKS. In this study we were able to identify two major MKS mutations in Finnish population, which cover over 90% of the cases. The first mutation is a 29 bp intronic deletion in the MKS1 gene (c.1483-7_35del) that is found in 70% of the families and the second is a C>T substitution in the coding region of CC2D2A (c.1762C>T), that is found in 20% of the MKS families. Both of these mutations result in abnormal splicing. The discovery of the disease genes has revealed that MKS is caused by primary cilia dysfunction. MKS1 gene has a conserved B9 domain, and it is found in the predicted ciliary proteome. CC2D2A protein is also found in the predicted ciliary proteome and it has a Ca2+ binding domain. The number of genes behind MKS has increased rapidly in the past years and to date, mutations have been identified in five genes (MKS1, TMEM67/MKS3, CEP290/MKS4, RPGRIP1L/MKS5 and CC2D2A/MKS6). Identification of the disease genes mutations has also revealed that MKS is an allelic disorder with other syndromes with overlapping phenotypes. Disorders that are caused by primary cilia dysfunction are collectively known as ciliopathies. Sequence analysis of all the known MKS genes in Finnish and non-Finnish families available to us, where the mutation was still unknown, revealed mutations in 14 out of the 30 families included in the study. When we collected all the reported mutations in MKS genes in different syndromes we could see that there was clearly a genotype-syndrome correlation between the mutations and the syndromes, since the same pair of mutations has never been reported in different syndromes. The basic molecular events behind MKS will not only give us information of this syndrome, but also significant novel information on early fetal development in general.