928 resultados para Image analysis
Resumo:
Three photocatalyst inks based on the redox dyes, Resazurin (Rz), Basic Blue 66 (BB66) and Acid Violet 7 (AV7), are used to assess the photocatalytic activities of a variety of different materials, such as commercial paint, tiles and glass and laboratory made samples of sol–gel coated glass and paint, which collectively exhibit a wide range of activities that cannot currently be probed by any one of the existing ISO tests. Unlike the ISO tests, the ink tests are fast (typically <10 min), simple to employ and inexpensive. Previous work indicates that the Rz ink test at least correlates linearly with other photocatalytic tests such as the photomineralisation of stearic acid. The average time to bleach 90% of the key RGB colour component of the ink, red for Rz and BB66 inks and green for AV7 ink, is determined, ttb(90), for eight samples of each of the different materials tested. Five laboratories conducted the tests and the results revealed an average repeatability and reproducibility of: ca. 11% and ca 21%, respectively, which compare well with those reported for the current ISO tests. Additional work on commercial self-cleaning glass using an Rz ink showed that the change in the red component of the RGB image of the ink correlated linearly with that of the change of absorbance at 608 nm, as measured using UV/vis spectroscopy, and the change in the a* component of the Lab colour analysis of the ink, as measured using diffuse reflectance spectroscopy. As a consequence, all three methods generate the same ttb(90). The advantages of the RGB digital image analysis method are discussed briefly.
Resumo:
Immunohistochemical staining for phosphatase and tensin homolog (PTEN) does not have either an acceptable standard protocol or concordance of scoring between pathologists. Evaluation of PTEN mRNA with a unique and verified sequence probe may offer a realistic alternative providing a robust and reproducible protocol. In this study, we have evaluated an in situ hybridization (ISH) protocol for PTEN mRNA using RNAScope technology and compared it with a standard protocol for PTEN immunohistochemistry (IHC). PTEN mRNA expression by ISH was consistently more sensitive than PTEN IHC, with 56% of samples on a mixed-tumor tissue microarray (TMA) showing high expression by ISH compared with 42% by IHC. On a prostate TMA, 49% of cases showed high expression by ISH compared with 43% by IHC. Variations in PTEN mRNA expression within malignant epithelium were quantifiable using image analysis on the prostate TMAs. Within tumors, clear overexpression of PTEN mRNA on malignant epithelium compared with benign epithelium was frequently observed and quantified. The use of SpotStudio software in the mixed-tumor TMA allowed for clear demonstration of varying levels of PTEN mRNA between tumor samples by the mRNA methodology. This was evident by the quantifiable differences between distinct oropharyngeal tumors (up to 3-fold increase in average number of spots per cell between 2 cases). mRNA detection of PTEN or other biomarkers, for which optimal or standardized immunohistochemical techniques are not available, represents a means by which heterogeneity of expression within focal regions of tumor can be explored with more confidence.
Resumo:
The treatment of cancer is becoming more precise, targeting specific oncogenic drivers with targeted molecular therapies. The epidermal growth factor receptor has been found to be over-expressed in a multitude of solid tumours. Immunohistochemistry is widely used in the fields of diagnostic and personalised medicine to localise and visualise disease specific proteins. To date the clinical utility of epidermal growth factor receptor immunohistochemistry in determining monoclonal antibody efficacy has remained somewhat inconclusive. The lack of an agreed reproducible scoring criteria for epidermal growth factor receptor immunohistochemistry has, in various clinical trials yielded conflicting results as to the use of epidermal growth factor receptor immunohistochemistry assay as a companion diagnostic. This has resulted in this test being removed from the licence for the drug panitumumab and not performed in clinical practice for cetuximab. In this review we explore the reasons behind this with a particular emphasis on colorectal cancer, and to suggest a way of resolving the situation through improving the precision of epidermal growth factor receptor immunohistochemistry with quantitative image analysis of digitised images complemented with companion molecular morphological techniques such as in situ hybridisation and section based gene mutation analysis.
Resumo:
Laser transmission joining (LTJ) is growing in importance, and has the potential to become a niche technique for the fabrication of hybrid plastic-metal joints for medical device applications. The possibility of directly joining plastics to metals by LTJ has been demonstrated by a number of recent studies. However, a reliable and quantitative method for defining the contact area between the plastic and metal, facilitating calculation of the mechanical shear stress of the hybrid joints, is still lacking. A new method, based on image analysis using ImageJ, is proposed here to quantify the contact area at the joint interface. The effect of discolouration on the mechanical performance of the hybrid joints is also reported for the first time. Biocompatible polyethylene terephthalate (PET) and commercially pure titanium (Ti) were selected as materials for laser joining using a 200 W CW fibre laser system. The effect of laser power, scanning speed and stand-off distance between the nozzle tip and top surface of the plastic were studied and analysed by Taguchi L9 orthogonal array and ANOVA respectively. The surface morphology, structure and elemental composition on the PET and Ti surfaces after shearing/peeling apart were characterized by SEM, EDX, XRD and XPS.
Resumo:
Keypoints (junctions) provide important information for focus-of-attention (FoA) and object categorization/recognition. In this paper we analyze the multi-scale keypoint representation, obtained by applying a linear and quasi-continuous scaling to an optimized model of cortical end-stopped cells, in order to study its importance and possibilities for developing a visual, cortical architecture.We show that keypoints, especially those which are stable over larger scale intervals, can provide a hierarchically structured saliency map for FoA and object recognition. In addition, the application of non-classical receptive field inhibition to keypoint detection allows to distinguish contour keypoints from texture (surface) keypoints.
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extraction. Simple, complex and end-stopped cells provide input for line, edge and keypoint detection. Detected events provide a rich, multi-scale object representation, and this representation can be stored in memory in order to identify objects. In this paper, the above context is applied to face recognition. The multi-scale line/edge representation is explored in conjunction with keypoint-based saliency maps for Focus-of-Attention. Recognition rates of up to 96% were achieved by combining frontal and 3/4 views, and recognition was quite robust against partial occlusions.
Resumo:
Object recognition requires that templates with canonical views are stored in memory. Such templates must somehow be normalised. In this paper we present a novel method for obtaining 2D translation, rotation and size invariance. Cortical simple, complex and end-stopped cells provide multi-scale maps of lines, edges and keypoints. These maps are combined such that objects are characterised. Dynamic routing in neighbouring neural layers allows feature maps of input objects and stored templates to converge. We illustrate the construction of group templates and the invariance method for object categorisation and recognition in the context of a cortical architecture, which can be applied in computer vision.
Resumo:
We present a 3D representation that is based on the pro- cessing in the visual cortex by simple, complex and end-stopped cells. We improved multiscale methods for line/edge and keypoint detection, including a method for obtaining vertex structure (i.e. T, L, K etc). We also describe a new disparity model. The latter allows to attribute depth to detected lines, edges and keypoints, i.e., the integration results in a 3D \wire-frame" representation suitable for object recognition.
Resumo:
Dissertação de mest., Estudos Marinhos e Costeiros, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extraction. Simple, complex and end-stopped cells provide input for line, edge and keypoint detection. Detected events provide a rich, multi-scale object representation, and this representation can be stored in memory in order to identify objects. In this paper, the above context is applied to face recognition. The multi-scale line/edge representation is explored in conjunction with keypoint-based saliency maps for Focus-of-Attention. Recognition rates of up to 96% were achieved by combining frontal and 3/4 views, and recognition was quite robust against partial occlusions.
Resumo:
La construction dans l’Arctique nécessite une connaissance précise des propriétés thermiques et géotechniques du pergélisol. La connaissance de ces propriétés est également nécessaire pour le paramétrage des modèles de transfert de chaleur. Des études antérieures ont démontré le grand potentiel de l’utilisation de la tomodensitométrie pour les mesures du volume des composantes du pergélisol et la visualisation de la cryostructure. Une nouvelle approche est proposée pour mesurer la conductivité thermique du pergélisol. Les objectifs généraux de ce projet sont (1) d’élaborer une nouvelle méthode de caractérisation du pergélisol à l’aide de la tomodensitométrie et de modèle éprouvés et (2) de comparer et mettre au point une méthode novatrice pour mesurer la conductivité thermique et des paramètres géotechniques. Les résultats démontrent que les tests effectués à l’aide de la tomodensitométrie donnent des résultats d’une valeur scientifique comparable aux autres méthodes existantes de mesure de déjà existantes de conductivité thermique du pergélisol.
Resumo:
Central obesity is the hallmark of a number of non-inheritable disorders. The advent of imaging techniques such asMRI has allowed for a fast and accurate assessment of body fat content and distribution. However, image analysis continues to be one of the major obstacles to the use of MRI in large-scale studies. In this study we assess the validity of the recently proposed fat–muscle quantitation system (AMRATM Profiler) for the quantification of intra-abdominal adipose tissue (IAAT) and abdominal subcutaneous adipose tissue (ASAT) from abdominal MR images. Abdominal MR images were acquired from 23 volunteers with a broad range of BMIs and analysed using sliceOmatic, the current gold-standard, and the AMRATM Profiler based on a non-rigid image registration of a library of segmented atlases. The results show that there was a highly significant correlation between the fat volumes generated by the two analysis methods, (Pearson correlation r = 0.97, p < 0.001), with the AMRATM Profiler analysis being significantly faster (~3 min) than the conventional sliceOmatic approach (~40 min). There was also excellent agreement between the methods for the quantification of IAAT (AMRA 4.73 ± 1.99 versus sliceOmatic 4.73 ± 1.75 l, p = 0.97). For the AMRATM Profiler analysis, the intra-observer coefficient of variation was 1.6% for IAAT and 1.1% for ASAT, the inter-observer coefficient of variationwas 1.4%for IAAT and 1.2%for ASAT, the intra-observer correlationwas 0.998 for IAAT and 0.999 for ASAT, and the inter-observer correlation was 0.999 for both IAAT and ASAT. These results indicate that precise and accurate measures of body fat content and distribution can be obtained in a fast and reliable form by the AMRATM Profiler, opening up the possibility of large-scale human phenotypic studies.
Resumo:
O calibre da artéria aorta torácica é avaliado em situações de suspeita de patologia ou em pacientes com pre-disposição para desenvolverem doenças vasculares. A medição das suas dimensões, em duas direcções diametralmente opostas e, assim, fulcral na avaliação desta estrutura. Para tal, o exame de primeira linha definido é a Angiografia por Tomografia Computorizada (Angio-TC), injectando-se um produto de contraste na veia radial que irá opacificar os vasos, permitindo a sua distinção das estruturas adjacentes. O presente trabalho, inserido na disciplina de Dissertação/ Projecto/ Estágio Profissional do Mestrado em Engenharia de Computação e Instrumentação Médica e com a cooperação da empresa Efficientia, foi sugerido pela equipa de Angio-TC do Centro Hospitalar de Vila Nova de Gaia (CHVNG) e tem por objectivo o desenvolvimento de uma aplicação para a medição e registo automático do diâmetro da aorta torácica em nove pontos anatómicos pre-definidos em imagens de Tomografia Computorizada (TC). A aplicação foi desenvolvida no ambiente integrado de processamento e análise de imagem, Fiji, sendo a metodologia composta pelas etapas de segmentação, desenho da linha central, determinação dos planos de cortes, segmentação e medição da aorta nos planos de corte. Os resultados obtidos pela metodologia proposta são concordantes com os obtidos por especialistas para o conjunto de teste utilizado neste trabalho.
Resumo:
Relatório de Estágio apresentado à Escola Superior de Educação de Lisboa para obtenção de grau de mestre em Ensino do 1.º e do 2.º Ciclo do Ensino Básico