842 resultados para Image Based Visual Servoing
Resumo:
Using neuromorphic analog VLSI techniques for modeling large neural systems has several advantages over software techniques. By designing massively-parallel analog circuit arrays which are ubiquitous in neural systems, analog VLSI models are extremely fast, particularly when local interactions are important in the computation. While analog VLSI circuits are not as flexible as software methods, the constraints posed by this approach are often very similar to the constraints faced by biological systems. As a result, these constraints can offer many insights into the solutions found by evolution. This dissertation describes a hardware modeling effort to mimic the primate oculomotor system which requires both fast sensory processing and fast motor control. A one-dimensional hardware model of the primate eye has been built which simulates the physical dynamics of the biological system. It is driven by analog VLSI circuits mimicking brainstem and cortical circuits that control eye movements. In this framework, a visually-triggered saccadic system is demonstrated which generates averaging saccades. In addition, an auditory localization system, based on the neural circuits of the barn owl, is used to trigger saccades to acoustic targets in parallel with visual targets. Two different types of learning are also demonstrated on the saccadic system using floating-gate technology allowing the non-volatile storage of analog parameters directly on the chip. Finally, a model of visual attention is used to select and track moving targets against textured backgrounds, driving both saccadic and smooth pursuit eye movements to maintain the image of the target in the center of the field of view. This system represents one of the few efforts in this field to integrate both neuromorphic sensory processing and motor control in a closed-loop fashion.
Resumo:
In this paper, we propose a novel method for measuring the coma aberrations of lithographic projection optics based on relative image displacements at multiple illumination settings. The measurement accuracy of coma can be improved because the phase-shifting gratings are more sensitive to the aberrations than the binary gratings used in the TAMIS technique, and the impact of distortion on displacements of aerial image can be eliminated when the relative image displacements are measured. The PROLITH simulation results show that, the measurement accuracy of coma increases by more than 25% under conventional illumination, and the measurement accuracy of primary coma increases by more than 20% under annular illumination, compared with the TAMIS technique. (c) 2007 Optical Society of America.
Resumo:
In the sinusoidal phase modulating interferometer technique, the high-speed CCD is necessary to detect the interference signals. The reason of ordinary CCD's low frame rate was analyzed, and a novel high-speed image sensing technique with adjustable frame rate based on ail ordinary CCD was proposed. And the principle of the image sensor was analyzed. When the maximum frequency and channel bandwidth were constant, a custom high-speed sensor was designed by using the ordinary CCD under the control of the special driving circuit. The frame rate of the ordinary CCD has been enhanced by controlling the number of pixels of every frame; therefore, the ordinary of CCD can be used as the high frame rate image sensor with small amount of pixels. The multi-output high-speed image sensor has the deficiencies of low accuracy, and high cost, while the high-speed image senor with small number of pixels by using this technique can overcome theses faults. The light intensity varying with time was measured by using the image sensor. The frame rate was LIP to 1600 frame per second (f/s), and the size of every frame and the frame rate were adjustable. The correlation coefficient between the measurement result and the standard values were higher than 0.98026, and the relative error was lower than 0.53%. The experimental results show that this sensor is fit to the measurements of sinusoidal phase modulating interferometer technique. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Our study of a novel technique for adaptive image sequence coding is reported. The number of reference frames and the intervals between them are adjusted to improve the temporal compensability of the input video. The bits are distributed more efficiently on different frame types according to temporal and spatial complexity of the image scene. Experimental results show that this dynamic group-of-picture (GOP) structure coding scheme is not only feasible but also better than the conventional fixed GOP method in terms of perceptual quality and SNR. (C) 1996 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel spatiotemporal segmentation technique is further developed for extracting uncovered background and moving objects from the image sequences, then the following motion estimation is performed only on the regions corresponding to moving objects. The frame difference contrast (FCON) and local variance contrast (LCON), which are related to the temporal and spatial homogeneity of the image sequence, are selected to form the 2-D spatiotemporal entropy. Then the spatial segmentation threshold is determined by maximizing the 2-D spatiotemporal entropy, and the temporal segmentation point is selected to minimize the complexity measure for image sequence coding. Since both temporal and spatial correlation of an image sequence are exploited, this proposed spatiotemporal segmentation technique can further be used to determine the positions of reference frames adaptively, hence resulting in a low bit rate. Experimental results show that this segmentation-based coding scheme is more efficient than usual fixed-size coding algorithms. (C) 1997 Society of Photo-Optical Instrumentation Engineers.
Resumo:
237 p.