972 resultados para Illinois Institute of Natural Resources. Division of Environmental Management
Resumo:
Water use invariably results in major impacts on river flows. Environmental Flows (EF) are defined as the quantity and quality of water that is needed to preserve the structure and the function of the river and riparian zone ecosystem and sufficient quantity of water to enable the survival and reproduction of aquatic organisms in different hydraulic habitats. This paper describes the criteria and methods used to determine EF and experiences with their application in Slovenia. The diversity of running waters of Slovenia demand special treatment and determination of EF for each individual section of the river system. Using hydrological, morphological and ecological criteria, two different approaches are used for the determination of EF in Slovenia, a rapid assessment method and a detailed assessment method. For both methods, data are then analyzed by an expert panel in order to determine an EF. Since 1994, more than 180 study sites have been examined for research and application of EF in Slovenia. Determination of EF for existing users has prioritized their water requirements so they can remain economically viable. Where new schemes are proposed, there has been much greater scope to prioritize ecosystem requirements. EF determination is receiving growing attention and will continue to increase in importance, driven by research that aids our understanding of flow-biota relationships and recent environmental policy and legislation at both the national and European level.
Resumo:
Certain materials used and produced in a wide range of non-nuclear industries contain enhanced activity concentrations of natural radionuclides. In particular, electricity production from coal is one of the major sources of increased exposure to man from enhanced naturally occurring materials. Over the past decades there has been some discussion about the elevated natural background radiation in the area near coal-fired power plants due to high uranium and thorium content present in coal. This work describes the methodology developed to assess the radiological impact due to natural radiation background increasing levels, potentially originated by a coal-fired power plant’s operation. Gamma radiation measurements have been done with two different instruments: a scintillometer (SPP2 NF, Saphymo) and a gamma ray spectrometer with energy discrimination (Falcon 5000, Canberra). A total of 40 relevant sampling points were established at locations within 20 km from the power plant: 15 urban and 25 suburban measured stations. The highest values were measured at the sampling points near to the power plant and those located in the area within the 6 and 20 km from the stacks. This may be explained by the presence of a huge coal pile (1.3 million tons) located near the stacks contributing to the dispersion of unburned coal and, on the other hand, the height of the stacks (225 m) which may influence ash’s dispersion up to a distance of 20 km. In situ gamma radiation measurements with energy discrimination identified natural emitting nuclides as well as their decay products (212Pb, 214Pb, 226Ra 232Th, 228Ac, 234Th 234Pa, 235U, etc.). This work has been primarily done to in order to assess the impact of a coal-fired power plant operation on the background radiation level in the surrounding area. According to the results, an increase or at least an influence has been identified both qualitatively and quantitatively.
Resumo:
Concerning improvements to the State Capitol Grounds including placement of the Allison memorial and Soldiers and Sailor's momuments; removal of heating plant and relieving the state of coal, ashes, gas and smoke; provision of office space to the Adjutant General; an eventual executive mansion; provision of office buildings; and for a Supreme Court building where together with its library auxiliaries will have perpetual growth and constant accessbility; and propose restoration of natural scenic value of the capitol site.
Resumo:
The present study has identified an actinomycete culture (S. psammoticus) which was capable of producing all the three major ligninolytic enzymes. The study revealed that least explored mangrove regions are potential sources for the isolation of actinomycetes with novel characteristics. The laccase production by the strain in SmF and SSF was found to be much higher than the reported values. The growth of the organism was favoured by alkaline pH and salinity of the medium. The enzyme also exhibited novel characteristics such as activity and stability at alkaline pH and salt tolerance. These two characters are quite significant from the industrial point of view making the enzyme an ideal candidate for industrial applications. Many of the application studies to date are focused on enzymes from fungal sources. However, the fungal laccases, which are mostly acidic in nature, could not be used universally for all application purposes especially, for the treatment of effluents from different industries, largely due to the alkaline nature of the effluents. Under such situations the enzymes from organisms like S. psammoticus with wide pH range could play a better role than the fungal counterparts. In the present study, the ability of the isolated strain and laccase in the degradation of dyes and phenolic compounds was successfully proved. The reusability of the immobilized enzyme system made the entire treatment process inexpensive. Thus it can be concluded from the present study that the laccase from this organism could be hopefully employed for the eco-friendly treatment of dye or phenol containing industrial effluents from various sources.
Resumo:
The Indian edible oyster Crassostrea madrasensis (Preston) is known to be a highly suitable candidate species for culture. Though Q, madrasensis has been subjected to intensive research, there has been no significant attempt to culture this oyster commercially. One major reason for the lack of interest in oyster culture could be the disparity in growth, survival and production reported by earlier workersf from different regions along the Indian coast. Greater predictability of production can create confidence and encourage entrepreneurs interested in oyster culture. The present study, which is a detailed investigation on the influence of various environmental variables on growth and reproduction of Q, madrasensis, is not confined to the impact of only hydrological parameters but is also extended to study the effect of different degrees of aerial exposure on growth and survival. The main objective of the study is to develop a background for subsequent development of a site suitability index for culture of Q, madrasensis along the Indian coast. Two sets of experiments were conducted during the present study. Details of the experiments are presented in the thesis under two major chapters comprising four sections each. Each chapter has a separate introduction, materials and methods, results and discussion. .
Resumo:
The present study consists of nine chapters including the introductory chapter. Chapter II makes a brief review of environmental literature and examines various measures adopted at the global level to protect the environment. The environmental problems often transgress national sovereignity and geographical boundaries. Therefore, attempts must be made at the national and international levels to protect the environment, the resources of which are the common property of mankind. The protection of the national environment from the ancient till the present forms the content of Chapter III. These chapters together provide a background to understand the issues analysed in the subsequent chapters. Carefully worked out theoretical framework is a pre-requisite for the successful study of a complex subject. Some of the theoretical issues of ‘environomics’ are examined in Chapter IV. The theoretical issues involved in estimating the costs and benefits of environmental protection constitute the theme of Chapter V. The state of environment in Eloor-Edayar Industrial belt andthe impact analysis of pollution of the area are discussed in Chapter VI and VII respectively. Chapter VIII makes the financial estimate of environmental protection of the project And finally, Chapter IX presents the findings of the study
Resumo:
The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.
Resumo:
Soil microorganisms have evolved two possible mechanisms for their uptake of organic N: the direct route and the mobilization-immobilization-turnover (MIT) route. In the direct route, simple organic molecules are taken up via various mechanisms directly into the cell. In the MIT route, the deamination occurs outside the cell and all N is mineralized to NH4+ before assimilation. A better understanding of the mechanisms controlling the different uptake routes of soil microorganisms under different environmental conditions is crucial for understanding mineralization processes of organic material in soil. For the first experiment we incubated soil samples from the long term trial in Bad Lauchstädt with corn residues with different C to N ratios and inorganic N for 21 days at 20 °C. Under the assumption that all added amino acids were taken up or mineralized, the direct uptake route was more important in soil amended with corn residues with a wide C to N ratio. After 21 days of incubation the direct uptake of added amino acids increased in the order addition of corn residue with a: “C to N ratio of 40 & (NH4)2SO4 and no addition (control)” (69% and 68%, respectively) < “C to N ratio of 20” (73%) < “C to N ratio of 40” (95%). In all treatments the proportion of the added amino acids that were mineralized increased with time, indicating that the MIT route became more important over time. To investigate the effects of soil depth on the N uptake route of soil microorganisms (experiment II), soil samples in two soil depths (0-5 cm; 30-40 cm) were incubated with corn residues with different C to N ratios and inorganic N for 21 days at 20 °C and 60% (WHC). The addition of corn residue resulted in a marked increase of protease activity in both depths due to the induction from the added substrate. Addition of corn residue with a wide C to N ratio resulted in a significantly greater part of the direct uptake (97% and 94%) than without the addition of residues (85% and 80%) or addition of residue with a small C to N ratio (90% and 84%) or inorganic N (91% and 79% in the surface soil and subsoil, respectively), suggesting that under conditions of sufficient mineralizable N (C to N ratio of 20) or increased concentrations of NH4+, the enzyme system involved in the direct uptake is slightly repressed. Substrate additions resulted in an initially significantly higher increase of the direct uptake in the surface soil than in the subsoil. As a large proportion of the organic N input into soil is in form of proteinaceous material, the deamination of amino acids is a key reaction of the MIT route. Therefore the enzyme amino acid oxidase contribute to the extracellular N mineralization in soil. The objective of experiment III was to adapt a method to determine amino acid oxidase in soil. The detection via synthetic fluorescent Lucifer Yellow derivatives of the amino acid lysine is possible in soil. However, it was not possible to find the substrate concentration at which the reaction rate is independent of substrate concentration and therefore we were not able to develop a valid soil enzyme assay.
Resumo:
The CGIAR System conducts research to produce international public goods (IPG) that are of wide applicability creating a scientific base which speeds and broadens local adaptive development. Integrated natural resources management (INRM) research is sometimes seen to be very location specific and consequently does not lend itself readily to the production of IPGs. In this paper we analyse ways in which strategic approaches to INRM research can have broad international applicability and serve as useful foundations for the development of locally adapted technologies. The paper describes the evolution of the IPG concept within the CGIAR and elaborates on five major types of IPGs that have been generated from a varied set of recent INRM research efforts. CGIAR networks have both strengths and weaknesses in INRM research and application, with enormous differences in relative research and development capacities, responsibilities and data access of its partners, making programme process evolution critical to acceptance and participation. Many of the lessons learnt regarding challenges and corresponding IPG research approaches are relevant to designing and managing future multi-scale, multi-locational, coordinated INRM programmes involving broad-based partnerships to address complex environmental and livelihood problems for development.
Resumo:
The influence of the environment and environmental change is largely unrepresented in standard theories of migration, whilst recent debates on climate change and migration focus almost entirely on displacement and perceive migration to be a problem. Drawing on an increasing evidence base that has assessed elements of the influence of the environment on migration, this paper presents a new framework for understanding the effect of environmental change on migration. The framework identifies five families of drivers which affect migration decisions: economic, political, social, demographic and environmental drivers. The environment drives migration through mechanisms characterised as the availability and reliability of ecosystem services and exposure to hazard. Individual migration decisions and flows are affected by these drivers operating in combination, and the effect of the environment is therefore highly dependent on economic, political, social and demographic context. Environmental change has the potential to affect directly the hazardousness of place. Environmental change also affects migration indirectly, in particular through economic drivers, by changing livelihoods for example, and political drivers, through affecting conflicts over resources, for example. The proposed framework, applicable to both international and internal migration, emphasises the role of human agency in migration decisions, in particular the linked role of family and household characteristics on the one hand, and barriers and facilitators to movement on the other in translating drivers into actions. The framework can be used to guide new research, assist with the evaluation of policy options, and provide a context for the development of scenarios representing a range of plausible migration futures.
Resumo:
This article combines institutional and resources arguments to show that the institutional distance between the home and the host country, and the headquarters’ financial performance have a relevant impact on the environmental standardization decision in multinational companies. Using a sample of 135 multinational companies in three different industries with headquarters and subsidiaries based in the USA, Canada, Mexico, France, and Spain, we find that a high environmental institutional distance between headquarters’ and subsidiaries’ countries deters the standardization of environmental practices. On the other hand, high-profit headquarters are willing to standardize their environmental practices, rather than taking advantage of countries with lax environmental protection to undertake more pollution-intensive activities. Finally, we show that headquarters’ financial performance also imposes a moderating effect on the relationship between environmental institutional distance between countries and environmental standardization within the multinational company.
Resumo:
The development of effective environmental management plans and policies requires a sound understanding of the driving forces involved in shaping and altering the structure and function of ecosystems. However, driving forces, especially anthropogenic ones, are defined and operate at multiple administrative levels, which do not always match ecological scales. This paper presents an innovative methodology of analysing drivers of change by developing a typology of scale sensitivity of drivers that classifies and describes the way they operate across multiple administrative levels. Scale sensitivity varies considerably among drivers, which can be classified into five broad categories depending on the response of ‘evenness’ and ‘intensity change’ when moving across administrative levels. Indirect drivers tend to show low scale sensitivity, whereas direct drivers show high scale sensitivity, as they operate in a non-linear way across the administrative scale. Thus policies addressing direct drivers of change, in particular, need to take scale into consideration during their formulation. Moreover, such policies must have a strong spatial focus, which can be achieved either by encouraging local–regional policy making or by introducing high flexibility in (inter)national policies to accommodate increased differentiation at lower administrative levels. High quality data is available for several drivers, however, the availability of consistent data at all levels for non-anthropogenic drivers is a major constraint to mapping and assessing their scale sensitivity. This lack of data may hinder effective policy making for environmental management, since it restricts the ability to fully account for scale sensitivity of natural drivers in policy design.
Resumo:
The development of effective environmental management plans and policies requires a sound understanding of the driving forces involved in shaping and altering the structure and function of ecosystems. However, driving forces, especially anthropogenic ones, are defined and operate at multiple administrative levels, which do not always match ecological scales. This paper presents an innovative methodology of analysing drivers of change by developing a typology of scale sensitivity of drivers that classifies and describes the way they operate across multiple administrative levels. Scale sensitivity varies considerably among drivers, which can be classified into five broad categories depending on the response of ‘evenness’ and ‘intensity change’ when moving across administrative levels. Indirect drivers tend to show low scale sensitivity, whereas direct drivers show high scale sensitivity, as they operate in a non-linear way across the administrative scale. Thus policies addressing direct drivers of change, in particular, need to take scale into consideration during their formulation. Moreover, such policies must have a strong spatial focus, which can be achieved either by encouraging local–regional policy making or by introducing high flexibility in (inter)national policies to accommodate increased differentiation at lower administrative levels. High quality data is available for several drivers, however, the availability of consistent data at all levels for non-anthropogenic drivers is a major constraint to mapping and assessing their scale sensitivity. This lack of data may hinder effective policy making for environmental management, since it restricts the ability to fully account for scale sensitivity of natural drivers in policy design.