931 resultados para ISM : molecules


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the Finite-Element-Method (FEM) in its application to quantum mechanical problems solving for diatomic molecules. Results for Hartree-Fock calculations of H_2 and Hartree-Fock-Slater calculations of molecules like N_2 and C0 have been obtained. The accuracy achieved with less then 5000 grid points for the total energies of these systems is 10_-8 a.u., which is demonstrated for N_2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the finite-element method in its application to solving quantum-mechanical problems for diatomic molecules. Results for Hartree-Fock calculations of H_2 and Hartree-Fock-Slater calculations for molecules like N_2 and CO are presented. The accuracy achieved with fewer than 5000 grid points for the total energies of these systems is 10^-8 a.u., which is about two orders of magnitude better than the accuracy of any other available method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relativistic molecular calculations within the Dirac-Slater scheme have been used in a study of the electronic structure of 6d-metal superheavy hexafluorides. The theoretical results are compared with calculations and measurements of the homolog 4d- and 5d-metal hexafluorides. Large spin-orbit splitting dominates the electronic structure and even has the same order of magnitude as the crystal-field splitting for the valence electrons for the superheavy molecules. Ionization energies have been calculated using a transition state procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using new relativistic molecular calculations within the Dirac-Slater scheme it is now feasible to study theoretically molecules containing superheavy elements. This opens a new era for the prediction of the physics and chemistry of superheavy elements. As an example we present the results for (_110 X) F_6, where it is shown that relativistic effects are nearly of the same order of magnitude as the crystal-field splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The real-time dynamics of multiphoton ionization and fragmentation of molecules Na_2 and Na_3 has been studied in molecular beam experiments employing ion and electron spectroscopy together with femtosecond pump-probe techniques. Experiments with Na_2 and Na_3 reveal unexpected features of the dynamics of the absorption of several photons as seen in the one- and three-dimensional vibrational wave packet motion in different potential surfaces and in high laser fields: In Na_2 a second major resonance-enhanced multiphoton ionization (REMPI) process is observed, involving the excitation of two electrons and subsequent electronic autoionization. The possibility of controlling a reaction by controlling the duration of propagation of a wave packet on an electronically-excited surface is demonstrated. In high laser fields, the contributions from direct photoionization and from the second REMPI process to the total ion yield change, due to different populations in the electronic states participating in the multiphoton ionization (MPI) processes. In addition, a vibrational wave packet motion in the electronic ground state is induced through stimulated emission pumping by the pump laser. The 4^1 \summe^+_g shelf state of Na_2 is given as an example for performing frequency spectroscopy of highlying electronic states in the time domain. Pure wave packet effects, such as the spreading and the revival of a vibrational wave packet, are investigated. The three-dimensional wave packet motion in the Na_3 reflects the normal modes in the X and B states, and shows in addition the pseudorotational motion in the B state in real time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The real-time dynamics of multiphoton ionization and fragmentation of molecules - Na_2 , Na_3 - and clusters - Na_n, Hg_n - has been studied in molecular beam experiments employing ion and electron spectroscopy together with femtosecond pump-probe techniques. Experiments with Na_2 and Na_3 reveal unexpected features of the dynamics of the absorption of several photons as seen in the one- and three dimensional vibrational wave packet motion in different potential surfaces and in high laser fields. Cluster size dependent studies of physical properties such as absorption resonances, lifetimes and decay channels have been performed using tunable femtosecond light pulses in resonance enhanced multiphoton ionization (REMPI) of the cluster size under investigation. This method failed in ns-laser experiments due to the ultrafast decay of the studied cluster. For Na_n, cluster we find that for cluster sizes n \le 21 molecular excitations and properties prevail over collective excitations of plasmon-like resonances. In the case of Hg_n cluster prompt formation of singly and doubly charged cluster are observed up to n \approx 60. The transient multiphoton ionization spectra show a 'short' time wave packet dynamics, which is identical for singly and doubly charged mercury clusters while the 'long' time fragmentation dynamics is different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Arbeit behandelt die numerische Untersuchung von Wasserstoff-Moleküldynamik in starken Laserfeldern. Im Speziellen wird die Struktur von Ionisationsspektren bei Einfach-Photoionisation betrachtet. Korrelationen zwischen Elektron- und Kernbewegung werden identifiziert und mit Effekten in den Energiespektren in Verbindung gebracht. Dabei wird stets auf die Integration der zeitabhängigen Schrödingergleichung zurückgegriffen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of short intense laser pulses with atoms/molecules produces a multitude of highly nonlinear processes requiring a non-perturbative treatment. Detailed study of these highly nonlinear processes by numerically solving the time-dependent Schrodinger equation becomes a daunting task when the number of degrees of freedom is large. Also the coupling between the electronic and nuclear degrees of freedom further aggravates the computational problems. In the present work we show that the time-dependent Hartree (TDH) approximation, which neglects the correlation effects, gives unreliable description of the system dynamics both in the absence and presence of an external field. A theoretical framework is required that treats the electrons and nuclei on equal footing and fully quantum mechanically. To address this issue we discuss two approaches, namely the multicomponent density functional theory (MCDFT) and the multiconfiguration time-dependent Hartree (MCTDH) method, that go beyond the TDH approximation and describe the correlated electron-nuclear dynamics accurately. In the MCDFT framework, where the time-dependent electronic and nuclear densities are the basic variables, we discuss an algorithm to calculate the exact Kohn-Sham (KS) potentials for small model systems. By simulating the photodissociation process in a model hydrogen molecular ion, we show that the exact KS potentials contain all the many-body effects and give an insight into the system dynamics. In the MCTDH approach, the wave function is expanded as a sum of products of single-particle functions (SPFs). The MCTDH method is able to describe the electron-nuclear correlation effects as the SPFs and the expansion coefficients evolve in time and give an accurate description of the system dynamics. We show that the MCTDH method is suitable to study a variety of processes such as the fragmentation of molecules, high-order harmonic generation, the two-center interference effect, and the lochfrass effect. We discuss these phenomena in a model hydrogen molecular ion and a model hydrogen molecule. Inclusion of absorbing boundaries in the mean-field approximation and its consequences are discussed using the model hydrogen molecular ion. To this end, two types of calculations are considered: (i) a variational approach with a complex absorbing potential included in the full many-particle Hamiltonian and (ii) an approach in the spirit of time-dependent density functional theory (TDDFT), including complex absorbing potentials in the single-particle equations. It is elucidated that for small grids the TDDFT approach is superior to the variational approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Powerpoint quiz for use with zappers on Shapes of Molecules (A-level revision).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guía de revisión en el área de la biología para estudiantes que estén preparando el examen CCEA (Council for the Curriculum Examinations and Assessment) en el nivel AS (enseñanza secundaria de segundo ciclo). El libro está dividido en tres secciones: una introducción con información sobre el examen oficial, sugerencias, consejos y técnicas de estudio y de aplicación en la redacción del examen; una guía de contenido con los siguientes temas: moléculas biológicas, encimas, ácidos nucleicos, células y virus, función y estructura de la membrana, el ciclo de la célula, mitosis y meiosis, tejidos y órganos; y un apartado final con dos ejemplos de examen, las respuestas y comentarios del examinador.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computational approach to the Hirshfeld [Theor. Chim. Acta 44, 129 (1977)] atom in a molecule is critically investigated, and several difficulties are highlighted. It is shown that these difficulties are mitigated by an alternative, iterative version, of the Hirshfeld partitioning procedure. The iterative scheme ensures that the Hirshfeld definition represents a mathematically proper information entropy, allows the Hirshfeld approach to be used for charged molecules, eliminates arbitrariness in the choice of the promolecule, and increases the magnitudes of the charges. The resulting "Hirshfeld-I charges" correlate well with electrostatic potential derived atomic charges

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A topological analysis of intracule and extracule densities and their Laplacians computed within the Hartree-Fock approximation is presented. The analysis of the density distributions reveals that among all possible electron-electron interactions in atoms and between atoms in molecules only very few are located rigorously as local maxima. In contrast, they are clearly identified as local minima in the topology of Laplacian maps. The conceptually different interpretation of intracule and extracule maps is also discussed in detail. An application example to the C2H2, C2H4, and C2H6 series of molecules is presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy decomposition scheme proposed in a recent paper has been realized by performing numerical integrations. The sample calculations carried out for some simple molecules show excellent agreement with the chemical picture of molecules, indicating that such an energy decomposition analysis can be useful from the point of view of connecting quantum mechanics with the genuine chemical concepts