980 resultados para INTRAVENOUS GAMMA-GLOBULIN


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Gamma Knife surgery (GKS) is a noninvasive neurosurgical stereotactic procedure, increasingly used as an alternative to open functional procedures. This includes the targeting of the ventrointermediate nucleus of the thalamus (e.g., Vim) for tremor. Objective: To enhance anatomic imaging for Vim GKS using high-field (7 T) MRI and Diffusion Weighted Imaging (DWI). Methods: Five young healthy subjects and two patients were scanned both on 3 and 7 T MRI. The protocol was the same in all cases, and included: T1-weighted (T1w) and DWI at 3T; susceptibility weighted images (SWI) at 7T for the visualization of thalamic subparts. SWI was further integrated into the Gamma Plan Software® (LGP, Elekta Instruments, AB, Sweden) and co-registered with 3T images. A simulation of targeting of the Vim was done using the quadrilatere of Guyot. Furthermore, a correlation with the position of the found target on SWI and also on DWI (after clustering of the different thalamic nuclei) was performed. Results: For the 5 healthy subjects, there was a good correlation between the position of the Vim on SWI, DWI and the GKS targeting. For the patients, on the pretherapeutic acquisitions, SWI helped in positioning the target. For posttherapeutic sequences, SWI supposed position of the Vim matched the corresponding contrast enhancement seen at follow-up MRI. Additionally, on the patient's follow-up T1w images, we could observe a small area of contrast-enhancement corresponding to the target used in GKS (e.g., Vim), which belongs to the Ventral-Lateral-Ventral (VLV) nuclei group. Our clustering method resulted in seven thalamic groups. Conclusion: The use of SWI provided us with a superior resolution and an improved image contrast within the central gray matter, enabling us to directly visualize the Vim. We additionally propose a novel robust method for segmenting the thalamus in seven anatomical groups based on DWI. The localization of the GKS target on the follow-up T1w images, as well as the position of the Vim on 7 T, have been used as a gold standard for the validation of VLV cluster's emplacement. The contrast enhancement corresponding to the targeted area was always localized inside the expected cluster, providing strong evidence of the VLV segmentation accuracy. The anatomical correlation between the direct visualization on 7T and the current targeting methods on 3T (e.g., quadrilatere of Guyot, histological atlases, DWI) seems to show a very good anatomical matching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 4πβ-γ coincidence counting method and its close relatives are widely used for the primary standardization of radioactivity. Both the general formalism and specific implementation of these methods have been well-documented. In particular, previous papers contain the extrapolation equations used for various decay schemes, methods for determining model parameters and, in some cases, tabulated uncertainty budgets. Two things often lacking from experimental reports are both the rationale for estimating uncertainties in a specific way and the details of exactly how a specific component of uncertainty was estimated. Furthermore, correlations among the components of uncertainty are rarely mentioned. To fill in these gaps, the present article shares the best-practices from a few practitioners of this craft. We explain and demonstrate with examples of how these approaches can be used to estimate the uncertainty of the reported massic activity. We describe uncertainties due to measurement variability, extrapolation functions, dead-time and resolving-time effects, gravimetric links, and nuclear and atomic data. Most importantly, a thorough understanding of the measurement system and its response to the decay under study can be used to derive a robust estimate of the measurement uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-frequency oscillations in the gamma-band reflect rhythmic synchronization of spike timing in active neural networks. The modulation of gamma oscillations is a widely established mechanism in a variety of neurobiological processes, yet its neurochemical basis is not fully understood. Modeling, in-vitro and in-vivo animal studies suggest that gamma oscillation properties depend on GABAergic inhibition. In humans, search for evidence linking total GABA concentration to gamma oscillations has led to promising -but also to partly diverging- observations. Here, we provide the first evidence of a direct relationship between the density of GABAA receptors and gamma oscillatory gamma responses in human primary visual cortex (V1). By combining Flumazenil-PET (to measure resting-levels of GABAA receptor density) and MEG (to measure visually-induced gamma oscillations), we found that GABAA receptor densities correlated positively with the frequency and negatively with amplitude of visually-induced gamma oscillations in V1. Our findings demonstrate that gamma-band response profiles of primary visual cortex across healthy individuals are shaped by GABAA-receptor-mediated inhibitory neurotransmission. These results bridge the gap with in-vitro and animal studies and may have future clinical implications given that altered GABAergic function, including dysregulation of GABAA receptors, has been related to psychiatric disorders including schizophrenia and depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Massive protostars have associated bipolar outflows with velocities of hundreds of km s-1. Such outflows can produce strong shocks when they interact with the ambient medium leading to regions of nonthermal radio emission. Aims. We aim at exploring under which conditions relativistic particles are accelerated at the terminal shocks of the protostellar jets and whether they can produce significant gamma-ray emission. Methods. We estimate the conditions necessary for particle acceleration up to very high energies and gamma-ray production in the nonthermal hot spots of jets associated with massive protostars embedded in dense molecular clouds. Results. We show that relativistic bremsstrahlung and proton-proton collisions can make molecular clouds with massive young stellar objects detectable by the Fermi satellite at MeV-GeV energies and by Cherenkov telescope arrays in the GeV-TeV range. Conclusions. Gamma-ray astronomy can be used to probe the physical conditions in star-forming regions and particle acceleration processes in the complex environment of massive molecular clouds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To evaluate the utility of a new multimodal image-guided intervention technique to detect epileptogenic areas with a gamma probe as compared with intraoperative electrocorticography. Materials and Methods Two symptomatic patients with refractory epilepsy underwent magnetic resonance imaging, videoelectroencephalography, brain SPECT scan, neuropsychological evaluation and were submitted to gamma probe-assisted surgery. Results In patient 1, maximum radioactive count was initially observed on the temporal gyrus at about 3.5 cm posteriorly to the tip of the left temporal lobe. After corticotomy, the gamma probe indicated maximum count at the head of the hippocampus, in agreement with the findings of intraoperative electrocorticography. In patient 2, maximum count was observed in the occipital region at the transition between the temporal and parietal lobes (right hemisphere). During the surgery, the area of epileptogenic activity mapped at electrocorticography was also delimited, demarcated, and compared with the gamma probe findings. After lesionectomy, new radioactive counts were performed both in the patients and on the surgical specimens (ex-vivo). Conclusion The comparison between intraoperative electrocorticography and gamma probe-assisted surgery showed similarity of both methods. The advantages of gamma probe include: noninvasiveness, low cost and capacity to demonstrate decrease in the radioactive activity at the site of excision after lesionectomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of Gamma Knife surgery (GKS) in local tumor control of non-secreting paragangliomas (PGLs) has been fully described by previous studies. However, with regard to secreting PGL, only one previous case report exists advocating its efficacy at a biological level. The aims of this study were: 1) to evaluate the safety/efficacy of GKS in a dopamine-secreting PGL; 2) to investigate whether the biological concentrations of free methoxytyramine could be used as a marker of treatment efficacy during the follow-up. We describe the case of a 62-year-old man diagnosed with left PGL. He initially underwent complete surgical excision. Thirty months after, he developed recurrent biological and neuroradiological disease; the most sensitive biomarker for monitoring the disease, concentration of plasma free methoxytyramine, started to increase. GKS was performed at a maximal marginal dose of 16 Gy. During the following 30 months, concentration of free methoxytyramine gradually decreased from 0.14 nmol/l (2*URL) before GKS to 0.09 nmol/l, 6 months after GKS and 0.07 nmol/l at the last follow-up after GKS (1.1*URL), confirming the efficacy of the treatment. Additionally, at 30 months there was approximately 36.6% shrinkage from the initial target volume. The GKS treatment was safe and effective, this being confirmed clinically, neuroradiologically and biologically. The case illustrates the importance of laboratory tests taking into account methoxytyramine when analyzing biological samples to assess the biochemical activity of a PGL. In addition, the identification of methoxytyramine as a unique positive biomarker could designate it for the monitoring of tumor relapse after treatments, including Gamma Knife surgery.