527 resultados para INTEGRALS
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
"Separatabdruck aus den Mitteilungen der Naturforschenden Gesellschaft in Bern."
Resumo:
"Extrait du tome 49. des Mémoires de l'Académie Royale des sciences, des lettres et des beaux-arts de Belgique, 1892."
Resumo:
"Extrait du tome 51 des Mémoires de l'Académie Royale des sciences, des lettres et des beaux-arts de Belgique, 1893."
Resumo:
"Mémoires de l'Académie Impériale des Sciences de St. Pétersbourg. 7e série, tom. 31, no. 3."
Resumo:
On t. p., 2̳[pi] and s̳ are superscript.
Resumo:
"Extrait du t. LIII des Mémoires couronnées et Mémoires des savants étrangers, pub. par l'Académie royale des sciences, des lettres et des beaux-arts de Belgique, 1893."
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Preservation photocopy on alkaline paper.
Resumo:
Vol. II translated by Earle Raymond Hedrick and Otto Dunkel, published in 2 parts.
Resumo:
t. 1. Intégrales simples et multiples. Lʼéquation de Laplace et ses applications. Développments in séries. Applications géométriques du calcul infinitésimal.
Resumo:
This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.