928 resultados para INDUCTION MOTORS
Resumo:
The Hoxa9 and Meis1 genes represent important oncogenic collaborators activated in a significant proportion of human leukemias with genetic alterations in the MLL gene. In this study, we show that the transforming property of Meis1 is modulated by 3 conserved domains, namely the Pbx interaction motif (PIM), the homeodomain, and the C-terminal region recently described to possess transactivating properties. Meis1 and Pbx1 interaction domain-swapping mutants are dysfunctional separately, but restore the full oncogenic activity of Meis1 when cotransduced in primary cells engineered to overexpress Hoxa9, thus implying a modular nature for PIM in Meis1-accelerated transformation. Moreover, we show that the transactivating domain of VP16 can restore, and even enhance, the oncogenic potential of the Meis1 mutant lacking the C-terminal 49 amino acids. In contrast to Meis1, the fusion VP16-Meis1 is spontaneously oncogenic, and all leukemias harbor genetic activation of endogenous Hoxa9 and/or Hoxa7, suggesting that Hoxa gene activation represents a key event required for the oncogenic activity of VP16-Meis1.
Resumo:
This paper outlines the use of phasor measurement unit (PMU) records to validate models of fixed speed induction generator (FSIG)-based wind farms during frequency transients. Wind turbine manufacturers usually create their own proprietary models which they can supply to power system utilities for stability studies, subject to confidentiality agreements. However, it is desirable to confirm the accuracy of supplied models with measurements from the particular installation, in order to assess their validity under real field conditions. This is prudent due to possible changes in control algorithms and design retrofits, not accurately reflected or omitted in the supplied model. One important aspect of such models, especially for smaller power systems with limited inertia, is their accuracy during system frequency transients. This paper, therefore, assesses the accuracy of FSIG models with regard to frequency stability, and hence validates a subset of the model dynamics. Such models can then be used with confidence to assess wider system stability implications. The measured and simulated response of a wind farm using doubly fed induction generator (DFIG) technology is also assessed.
Resumo:
Hypoxia results in adaptive changes in the transcription of a range of genes including erythropoietin. An important mediator is hypoxia-inducible factor-1 (HIF-1), a DNA binding complex shown to contain at least two basic helix-loop-helix PAS-domain (bHLH-PAS) proteins, HIF-1 alpha and aryl hydrocarbon nuclear receptor translocator (ARNT), In response to hypoxia, HIF-1 alpha is activated and accumulates rapidly in the cell. Endothelial PAS domain protein 1 (EPAS-1) is a recently identified bHLH-PAS protein with 48% identity to HIF-1 alpha, raising the question of its role in responses to hypoxia. We developed specific antibodies and studied expression and regulation of EPAS-1 mRNA and protein across a range of human cell lines. EPAS-1 was widely expressed, and strongly induced by hypoxia at the level of protein but not mRNA. Comparison of the effect of a range of activating and inhibitory stimuli showed striking similarities in the EPAS-1 and HIF-1 alpha responses. Although major differences were observed in the abundance of EPAS-1 and HIF-1 alpha in different cell types, differences in the inducible response were subtle with EPAS-1 protein being slightly more evident in normoxic and mildly hypoxic cells. Functional studies in a mutant cell line (Ka13) expressing neither HIF-1 alpha nor EPAS-1 confirmed that both proteins interact with hypoxically responsive targets, but suggest target specificity with greater EPAS-1 transactivation (relative to HIF-1 alpha transactivation) of the VEGF promoter than the LDH-A promoter. (C) 1998 by The American Society of Hematology.
Resumo:
Steroids form a structurally closely related group. As a result, antibodies produced for use in immunoassays regularly show unwanted cross-reactivities, These may be reduced by altering hapten-protein coupling procedures, thereby reducing the exposure of the determinants giving rise to the undesirable cross-reaction. However, these procedures carl prove to be complex, expensive and nor totally predictable in outcome. Exploitation of the clonal selection theory is an attractive alternative approach. The host is primed with the interfering cross-reactant coupled to a non-immunogenic amino acid copolymer to inactivate the B-lymphocyte clones specific for this steroid, producing a specific immunotolerance. Then, 3 days Inter, the host is immunized with the steroid against which nn antibody is required. The clones producing antibody to this immunogen are unaffected and the cross-reactivity is significantly reduced or deleted The technique has been applied to the reduction of endogenous sex steroid cross-reactivity from antibodies prepared against synthetic and semi-synthetic androgens (17 alpha-methyltestosterone, 19-nor-beta-testosterone) and the progestogen medroxyprogesterone. Antibodies prepared against the synthetic oestrogen zeranol using this technique have significantly reduced its undesirable cross-reactivity with the fungal metabolite 7 alpha-zearalenol. Highly specific antisera have been generated in all cases, the only adverse effect being a reduction in the titres achieved in comparison with rabbits receiving the conventional immunizing regime.
Resumo:
Radiation biophysics has sought to understand at a molecular level, the mechanisms through which ionizing radiations damage DNA, and other molecules within living cells. The complexity of lesions produced in the DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. To study the relationship between the energy deposited and the damage produced, we have developed novel techniques for irradiating dry prasmid DNA, partially re-hydrated DNA and DNA in solution using monochromatic vacuum-UV synchrotron radiation. We have used photons in the energy range 7-150 eV, corresponding to the range of energies typically involved in the efficient production of DNA single-strand (SSB), and double-strand breaks (DSB) by ionizing radiation. The data show that both types of breaks are produced at all energies investigated (with, or without water present). Also, the energy dependence for DSB induction follows a similar trend to SSB induction but at a 20-30-fold reduced incidence, suggesting a common precursor for both types of damage. Preliminary studies where DNA has been irradiated in solution indicate a change in the shape of the dose-effect curve (from linear, to linear-quadratic for double-strand break induction) and a large increase in sensitivity due to the presence of water.
Resumo:
Purpose: To measure hypoxic chemical fixation processes of radiation damage in both isolated plasmid DNA and in GSH-depleted E. coli cells.