980 resultados para IMMUNOFLUORESCENCE
Resumo:
Summary : Antigen-specific T lymphocytes constantly patrol the body to search for invading pathogens. Given the large external and internal body surfaces that need to be surveyed, a sophisticated strategy is necessary to facilitate encounters between T cells and pathogens. Dendritic cells present at all body surfaces are specialized in capturing pathogens and bringing them to T zones of secondary lymphoid organs, such as the lymph nodes and the spleen. Here, dendritic cells present antigenic fragments and activate the rare antigen-specific T lymphocytes. This induction of an immune response is facilitated in multiple ways by a dense network of poorly characterized stromal cells, termed fibroblastic reticular cells (FRCs). They constitutively produce the chemokines CCL21 and CCL19, which attract naïve T cells and dendritic cells into the T zone. Further, they provide an adhesion scaffold for dendritic cells and a migration scaffold for naïve T cells, allowing efficient screening of dendritic cell by thousands of T cells. FRCs also form a system of microchannels (conduits) that allows rapid transport of antigen or cytokines from the subcapsular sinus to the T zone. We characterized lymph node FRCS by flow cytometry, immunofluorescence microscopy, real time PCR and functional assays and could show that FRCs are a unique type of myofibroblasts which produce the T cell survival factor IL-7. This function was shown to be critically involved in regulating the size of the peripheral T cell pool and further demonstrates the importance of FRCs in maintaining immunocompetence. As we observed that some dendritic cells also express the receptor for IL-7, we expected a similar function of IL-7 in their survival. Surprisingly, we found no role for IL-7 in their survival but in their development. Analysis of hematopoietic precursors suggested that part of the dendritic cell pool develops out of an IL-7 dependent precursor, which maybe shared with lymphocytes. During the induction of an immune response, lymph node homeostasis is drastically altered when the lymph node expands several-fold in size to accommodate many more lymphocytes. Here, we describe that this expansion of the T zone is accompanied by the activation and proliferation of FRCs thereby preserving T zone architecture and function. This expansion of the FRC network is regulated by antigen-independent and -dependent events. It demonstrates the incredible plasticity of this organ allowing clonal expansion of antigen-specific lymphocytes. Résumé : Les lymphocytes T, spécifiques pour un antigène particulier, patrouillent constamment le corps à la recherche de l'invasion de pathogène. A cause des grandes surfaces externes et internes du corps, une stratégie sophistiquée est nécessaire afin de faciliter les rencontres entre les cellules T et les agents pathogènes. Les cellules dendritiques présentes dans toutes les surfaces du corps sont spécialisées dans la capture des agents pathogènes et dans le transport vers les zones T des organes lymphoïdes secondaires, comme les ganglions lymphatiques et la rate. Dans ces organes, les cellules dendritiques présentent les fragments antigéniques et activent les lymphocytes T rares. L'induction de cette réponse immunitaire est facilitée de différentes manières par un réseau dense de cellules strornales mal caractérisé, appelées 'fibroblastic reticular tells' (FRCs). FRCs produisent constitutivement les chimiokines CCL21 et CCL19, qui attirent les lymphocytes T naïfs et les cellules dendritiques vers la zone T. En outre, elles donnent une base d'adhérence pour les cellules dendritiques et elles attirent les cellules T naïves vers les cellules dendritiques. Les FRCs forment des petits canaux (ou conduits) qui permettent le transport rapide d'antigènes solubles ou de cytokines vers la zone T. Nous avons caractérisé les FRCs par cytométrie en flux, immunofluorescence et par PCR en temps réel et nous avons démontré que les FRCs sont un type unique de rnyofibroblastes qui produisent un facteur de survie des cellules T, l'Interleukine-7. Il a été démontré que cette fonction est cruciale afin d'augmenter la taille et la diversité du répertoire de cellules T, et ainsi, maintenir l'immunocompétence. Comme nous avons observé que certaines cellules dendritiques expriment également le récepteur de l'IL-7, nous avons testé une fonction similaire dans leur survie. Étonnamment, nous n'avons pas trouvé de rôle pour l'IL-7 dans leur survie, mais dans leur développement. L'analyse des précurseurs hématopoïétiques a suggéré qu'une fraction des cellules dendritiques se développe à partir des précurseurs dépendants de l'IL-7, qui sont probablement partagés avec les lymphocytes. Au cours de l'induction d'une réponse immunitaire, l'homéostasie du ganglion lymphatique est considérablement modifiée. En effet, sa taille augmente considérablement afin d'accueillir un plus grand nombre de lymphocytes. Nous décrivons ici que cet élargissement de la zone T est accompagné par l'activation et 1a prolifération des FRCs, préservant l'architecture et la fonction de la zone T. Cette expansion du réseau des FRCs est régie par des évènements à la fois dépendants et indépendants de l'antigène. Cela montre l'incroyable plasticité de cet organe qui permet l'expansion clonale des lymphocytes T spécifiques.
Resumo:
BACKGROUND: Plasmodium vivax circumsporozoite (PvCS) protein is a major sporozoite surface antigen involved in parasite invasion of hepatocytes and is currently being considered as vaccine candidate. PvCS contains a dimorphic central repetitive fragment flanked by conserved regions that contain functional domains. METHODS: We have developed a chimeric 137-mer synthetic polypeptide (PvCS-NRC) that includes the conserved region I and region II-plus and the two natural repeat variants known as VK210 and VK247. The antigenicity of PvCS-NRC was tested using human sera from PNG and Colombia endemic areas and its immunogenicity was confirmed in mice with different genetic backgrounds, the polypeptide formulated either in Alum or GLA-SE adjuvants was assessed in inbred C3H, CB6F1 and outbred ICR mice, whereas a formulation in Montanide ISA51 was tested in C3H mice. RESULTS: Antigenicity studies indicated that the chimeric peptide is recognized by a high proportion (60-70%) of residents of malaria-endemic areas. Peptides formulated with either GLA-SE or Montanide ISA51 adjuvants induced stronger antibody responses as compared with the Alum formulation. Sera from immunized mice as well as antigen-specific affinity purified human IgG antibodies reacted with sporozoite preparations in immunofluorescence and Western blot assays, and displayed strong in vitro inhibition of sporozoite invasion (ISI) into hepatoma cells. CONCLUSIONS: The polypeptide was recognized at high prevalence when tested against naturally induced human antibodies and was able to induce significant immunogenicity in mice. Additionally, specific antibodies were able to recognize sporozoites and were able to block sporozoite invasion in vitro. Further evaluation of this chimeric protein construct in preclinical phase e.g. in Aotus monkeys in order to assess the humoral and cellular immune responses as well as protective efficacy against parasite challenge of the vaccine candidate must be conducted.
Lipoprotein lipase and leptin are accumulated in different secretory compartments in rat adipocytes.
Resumo:
Adipose cells produce and secrete several physiologically important proteins, such as lipoprotein lipase (LPL), leptin, adipsin, Acrp30, etc. However, secretory pathways in adipocytes have not been characterized, and vesicular carriers responsible for the accumulation and transport of secreted proteins have not been identified. We have compared the intracellular localization of two proteins secreted from adipose cells: leptin and LPL. Adipocytes accumulate large amounts of both proteins, suggesting that neither of them is targeted to the constitutive secretory pathway. By means of velocity centrifugation in sucrose gradients, equilibrium density centrifugation in iodixanol gradients, and immunofluorescence confocal microscopy, we determined that LPL and leptin were localized in different membrane structures. LPL was found mainly in the endoplasmic reticulum with a small pool being present in low density membrane vesicles that may represent a secretory compartment in adipose cells. Virtually all intracellular leptin was localized in these low density secretory vesicles. Insulin-sensitive Glut4 vesicles did not contain either LPL or leptin. Thus, secretion from adipose cells is controlled both at the exit from the endoplasmic reticulum as well as at the level of "downstream" secretory vesicles.
Resumo:
Cell adhesion to the extracellular matrix proteins occurs through interactions with integrins that bind to Arg-Gly-Asp (RGD) tripeptides, and syndecan-4, which recognizes the heparin-binding domain of other proteins. Both receptors trigger signaling pathways, including those that activate RhoGTPases such as RhoA and Rac1. This sequence of events modulates cell adhesion to the ECM and cell migration. Using a neuron-astrocyte model, we have reported that the neuronal protein Thy-1 engages αVβ3 integrin and syndecan-4 to induce RhoA activation and strong astrocyte adhesion to their underlying substrate. Thus, because cell-cell interactions and strong cell attachment to the matrix are considered antagonistic to cell migration, we hypothesized that Thy-1 stimulation of astrocytes should preclude cell migration. Here, we studied the effect of Thy-1 expressing neurons on astrocyte polarization and migration using a wound-healing assay and immunofluorescence analysis. Signaling molecules involved were studied by affinity precipitation, western blotting and the usage of specific antibodies. Intriguingly, Thy-1 interaction with its two receptors was found to increase astrocyte polarization and migration. The latter events required interactions of these receptors with both the RGD-like sequence and the heparin-binding domain of Thy-1. Additionally, prolonged Thy-1-receptor interactions inhibited RhoA activation while activating FAK, PI3K and Rac1. Therefore, sustained engagement of integrin and syndecan-4 with the neuronal surface protein Thy-1 induces astrocyte migration. Interestingly we identify here, a cell-cell interaction that despite initially inducing strong cell attachment, favors cell migration upon persistent stimulation by engaging the same signaling receptors and molecules as those utilized by the extracellular matrix proteins to stimulate cell movement.
Resumo:
It is well established that Notch signaling plays a critical role at multiple stages of T cell development and activation. However, detailed analysis of the cellular and molecular events associated with Notch signaling in T cells is hampered by the lack of reagents that can unambiguously measure cell surface Notch receptor expression. Using novel rat mAbs directed against the extracellular domains of Notch1 and Notch2, we find that Notch1 is already highly expressed on common lymphoid precursors in the bone marrow and remains at high levels during intrathymic maturation of CD4(-)CD8(-) thymocytes. Notch1 is progressively down-regulated at the CD4(+)CD8(+) and mature CD4(+) or CD8(+) thymic stages and is expressed at low levels on peripheral T cells. Immunofluorescence staining of thymus cryosections further revealed a localization of Notch1(+)CD25(-) cells adjacent to the thymus capsule. Notch1 was up-regulated on peripheral T cells following activation in vitro with anti-CD3 mAbs or infection in vivo with lymphocytic chorio-meningitis virus or Leishmania major. In contrast to Notch1, Notch2 was expressed at intermediate levels on common lymphoid precursors and CD117(+) early intrathymic subsets, but disappeared completely at subsequent stages of T cell development. However, transient up-regulation of Notch2 was also observed on peripheral T cells following anti-CD3 stimulation. Collectively our novel mAbs reveal a dynamic regulation of Notch1 and Notch2 surface expression during T cell development and activation. Furthermore they provide an important resource for future analysis of Notch receptors in various tissues including the hematopoietic system.
Resumo:
A new strategy for the rapid identification of new malaria antigens based on protein structural motifs was previously described. We identified and evaluated the malaria vaccine potential of fragments of several malaria antigens containing α-helical coiled coil protein motifs. By taking advantage of the relatively short size of these structural fragments, we constructed different poly-epitopes in which 3 or 4 of these segments were joined together via a non-immunogenic linker. Only peptides that are targets of human antibodies with anti-parasite in vitro biological activities were incorporated. One of the constructs, P181, was well recognized by sera and peripheral blood mononuclear cells (PBMC) of adults living in malaria-endemic areas. Affinity purified antigen-specific human antibodies and sera from P181-immunized mice recognised native proteins on malaria-infected erythrocytes in both immunofluorescence and western blot assays. In addition, specific antibodies inhibited parasite development in an antibody dependent cellular inhibition (ADCI) assay. Naturally induced antigen-specific human antibodies were at high titers and associated with clinical protection from malaria in longitudinal follow-up studies in Senegal.
Resumo:
PURPOSE: Local delivery of therapeutic molecules encapsulated within liposomes is a promising method to treat ocular inflammation. The purpose of the present study was to define the biodistribution of rhodamine-conjugated liposomes loaded with vasoactive intestinal peptide (VIP), an immunosuppressive neuropeptide, following their intravitreal (IVT) injection in normal rats. METHODS: Healthy seven- to eight-week-old Lewis male rats were injected into the vitreous with empty rhodamine-conjugated liposomes (Rh-Lip) or with VIP-loaded Rh-Lip (VIP-Rh-Lip; 50 mM of lipids with an encapsulation efficiency of 3.0+/-0.4 mmol VIP/mol lipids). Twenty-four h after IVT injection, the eyes, the cervical, mesenteric, and inguinal lymph nodes (LN), and spleen were collected. The phenotype and distribution of cells internalizing Rh-Lip and VIP-Rh-Lip were studied. Determination of VIP expression in ocular tissues and lymphoid organs and interactions with T cells in cervical LN was performed on whole mounted tissues and frozen tissue sections by immunofluorescence and confocal microscopy. RESULTS: In the eye, 24 h following IVT injection, fluorescent liposomes (Rh-Lip and VIP-Rh-Lip) were detected mainly in the posterior segment of the eye (vitreous, inner layer of the retina) and to a lesser extent at the level of the iris root and ciliary body. Liposomes were internalized by activated retinal Müller glial cells, ocular tissue resident macrophages, and rare infiltrating activated macrophages. In addition, fluorescent liposomes were found in the episclera and conjunctiva where free VIP expression was also detected. In lymphoid organs, Rh-Lip and VIP-Rh-Lip were distributed almost exclusively in the cervical lymph nodes (LN) with only a few Rh-Lip-positive cells detected in the spleen and mesenteric LN and none in the inguinal LN. In the cervical LN, Rh-Lip were internalized by resident ED3-positive macrophages adjacent to CD4 and CD8-positive T lymphocytes. Some of these T lymphocytes in close contact with macrophages containing VIP-Rh-Lip expressed VIP. CONCLUSIONS: Liposomes are specifically internalized by retinal Müller glial cells and resident macrophages in the eye. A limited passage of fluorescent liposomes from the vitreous to the spleen via the conventional outflow pathway and the venous circulation was detected. The majority of fluorescent liposomes deposited in the conjunctiva following IVT injection reached the subcapsular sinus of the cervical LN via conjuntival lymphatics. In the cervical LN, Rh-Lip were internalized by resident subcapsular sinus macrophages adjacent to T lymphocytes. Detection of VIP in both macrophages and T cells in cervical LN suggests that IVT injection of VIP-Rh-Lip may increase ocular immune privilege by modulating the loco-regional immune environment. In conclusion, our observations suggest that IVT injection of VIP-loaded liposomes is a promising therapeutic strategy to dampen ocular inflammation by modulating macrophage and T cell activation mainly in the loco-regional immune system.
Resumo:
The human TPTE (Transmembrane Phosphatase with TEnsin homology) gene family encodes a PTEN-related tyrosine phosphatase with four potential transmembrane domains. Chromosomal mapping revealed multiple copies of the TPTE gene on chromosomes 13, 15, 21, 22 and Y. Human chromosomes 13 and 21 copies encode two functional proteins, TPIP (TPTE and PTEN homologous Inositol lipid Phosphatase) and TPTE, respectively, whereas only one copy of the gene exists in the mouse genome. In the present study, we show that TPTE and TPIP proteins are expressed in secondary spermatocytes and/or prespermatids. In addition, we report the existence of several novel alternatively spliced isoforms of these two proteins with variable number of transmembrane domains. The latter has no influence on the subcellular localization of these different peptides as shown by co-immunofluorescence experiments. Finally, we identify another expressed TPTE copy, mapping to human chromosome 22, whose transcription appears to be under the control of the LTR of human endogenous retrovirus RTVL-H3.
Resumo:
Using both conventional fluorescence and confocal laser scanning microscopy we have investigated whether or not stabilization of isolated human erythroleukemic nuclei with sodium tetrathionate can maintain in the nuclear matrix the same spatial distribution of three polypeptides (M(r) 160 kDa and 125 kDa, previously shown to be components of the internal nuclear matrix plus the 180-kDa nucleolar isoform of DNA topoisomerase II) as seen in permeabilized cells. The incubation of isolated nuclei in the presence of 2 mM sodium tetrathionate was performed at 0 degrees C or 37 degrees C. The matrix fraction retained 20-40% of nuclear protein, depending on the temperature at which the chemical stabilization was executed. Western blot analysis revealed that the proteins studied were completely retained in the high-salt resistant matrix. Indirect immunofluorescence experiments showed that the distribution of the three antigens in the final matrix closely resembled that detected in permeabilized cells, particularly when the stabilization was performed at 37 degrees C. This conclusion was also strengthened by analysis of cells, isolated nuclei and the nuclear matrix by means of confocal laser scanning microscopy. We conclude that sodium tetrathionate stabilization of isolated nuclei does not alter the spatial distribution of some nuclear matrix proteins.
Resumo:
Using the yeast two-hybrid system, we identified ezrin as a protein interacting with the C-tail of the alpha1b-adrenergic receptor (AR). The interaction was shown to occur in vitro between the receptor C-tail and the N-terminal portion of ezrin, or Four-point-one ERM (FERM) domain. The alpha1b-AR/ezrin interaction occurred inside the cells as shown by the finding that the transfected alpha1b-AR and FERM domain or ezrin could be coimmunoprecipitated from human embryonic kidney 293 cell extracts. Mutational analysis of the alpha1b-AR revealed that the binding site for ezrin involves a stretch of at least four arginines on the receptor C-tail. The results from both receptor biotinylation and immunofluorescence experiments indicated that the FERM domain impaired alpha1b-AR recycling to the plasma membrane without affecting receptor internalization. The dominant negative effect of the FERM domain, which relies on its ability to mask the ezrin binding site for actin, was mimicked by treatment of cells with cytochalasin D, an actin depolymerizing agent. A receptor mutant (DeltaR8) lacking its binding site in the C-tail for ezrin displayed delayed receptor recycling. These findings identify ezrin as a new protein directly interacting with a G protein-coupled receptor and demonstrate the direct implication of ezrin in GPCR trafficking via an actin-dependent mechanism.
Resumo:
Résumé Objectif : L'hyperplasie intimale est un processus de remodelage vasculaire qui apparaît après une lésion vasculaire. Les mécanismes impliqués dans l'hyperplasie intimale sont la prolifération, la dédifférentiation et la migration des cellules musculaires lisses depuis la média vers l'espace sous-intimal. Nous avons émis l'hypothèse que les jonctions communicantes de type gap, qui coordonnent certains processus physiologiques tels que la croissance et la différentiation cellulaire, pouvaient participer au développement de l'hyperplasie intimale. Méthodes : Des segments de veines saphènes humaines prélevées chirurgicalement lors de pontages, ont été ouverts longitudinalement avec la surface luminale placée vers le haut et maintenus en culture pendant 14 jours. Des fragments veineux ont été préparés pour une évaluation histologique, pour des mesures de l'épaisseur de la néointima, et pour des analyses immunocytochimiques de l'ARN messager ainsi que des protéines. Résultats : Parmi les 4 connexines (Cxs 37, 40, 43 et 45) qui forment les jonctions communicantes dans les veines, nous avons focalisé notre étude sur l'expression des Cxs 43 et 40; nous avons démontré que la Cx43 est exprimée dans les cellules musculaires lisses et les cellules endothéliales alors que la Cx40 est uniquement présente dans l'endothélium. Après 14 jours en culture, des analyses histomorphométriques ont montré une augmentation significative de l'épaisseur de l'intima démontrant la présence d'hyperplasie intimale. Une analyse temporelle a révélé une augmentation progressive de la Cx43 jusqu'à une augmentation maximale de six à huit fois au niveau de l'ARN messager et des protéines après 14 jours en culture. Au contraire, l'expression de la Cx40 n'était pas modifiée. Des analyses par immunofluorescence ont montré également une augmentation de la Cx43 dans les membranes des cellules musculaires lisses de la média. Le développement de l'hyperplasie intimale in vitro est diminué en présence de fluvastatin et cette diminution est associée à une réduction de l'expression de la Cx43. Conclusions : Ces données démontrent que la Cx43 est augmentée in vitro pendant le processus d'hyperplasie intimale et que la fluvastatin prévient cette induction. Ces résultats suggèrent un rôle crucial joué par la communication intercellulaire impliquant la Cx43 dans la veine humaine durant le développement de l'hyperplasie intimale. Abstract Objective: Intimal hyperplasia is a vascular remodelling process that occurs after a vascular injury. The mechanisms involved in intimal hyperplasia are proliferation, dedifferentiation, and migration of medial smooth muscle cells towards the subintimal space. We postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, might participate in the development of intimal hyperplasia. connexin43 (Cx43) expression levels may be altered in intimal hyperplasia, and we therefore evaluated the regulated expression of Cx43 in human saphenous veins in culture in the presence or not of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. Methods: Segments of harvested human saphenous veins, obtained at the time of bypass graft, were opened longitudinally with the luminal surface uppermost and maintained in culture for 14 days. Vein fragments were then processed for histologic examination, neointimal thickness measurements, immunocytochemistry, RNA, and proteins analysis. Results: Of the four connexins (Cx37, 40, 43, and 45), we focused on Cx43 and Cx40, which we found by real-time polymerase chain reaction to be expressed in the saphenous vein because they are the predominant connexins expressed by smooth muscle cells and endothelial cells. Afrer 14 days of culture, histomorphometric analysis showed a significant increase in the intimal thickness as observed during the process of intimal hyperplasia. Atime-course analysis revealed a progressive upregulation of Cx43 to reach a maximal increase of sixfold to eightfold at both transcript and protein levels after 14 days in culture. In contrast, the expression of Cx40, abundantly expressed in the endothelial cells, was not altered. Immunofluorescence showed a large increase in Cx43 within smooth muscle cell membranes of the media layer. The development of intimal hyperplasia in vitro was decreased in presence of fluvastatin and was associated with reduced Cx43 expression. Conclusions: These data show that Cx43 is increased in vitro during the process of intimal hyperplasia and that fluvastatin could prevent this induction, supporting a critical role for Cx43-mediated gap-junctional communication in the human vein during the development of intimal hyperplasia. (J Vasc Surg 2005;41:1043-52.)
Resumo:
To evaluate the regulation of connexin expression by fluid pressure, we have studied the effects of elevated transmural urine pressure on Connexin43 (Cx43) and Cx26. We chose to focus on these two proteins out of the five connexins (Cx26, 43, 40, 37, and 45) which we found by RT-PCR to be expressed in the rat bladder, since in situ hybridization and immunofluorescence showed that Cx43 is the predominant connexin expressed by smooth muscle cells (SMC), whereas Cx26 is abundantly expressed only in the latter cell type. To evaluate whether these connexins are affected by changes in transmural urine pressure, we used a rat model of bladder outlet obstruction, in which a ligature is placed around the urethra. Under conditions of increased fluid pressure due to urine retention, we observed that the expression of both Cx43 and Cx26 increased at both transcript and protein levels, reaching a maximum 7-9 h after the ligature. Further analysis revealed that these changes were accounted for by a fourfold increase in Cx43 mRNA of SMC but not urothelial cell and by a fivefold increase in Cx26 mRNA of urothelium. Scrape-loading of propidium iodide showed that the latter change was paralleled by a twofold increase in coupling between urothelial cells. The data show that Cx43 and Cx26 are differentially regulated during bladder outlet obstruction and contribute to the response of the bladder wall to increased voiding pressure, possibly to control its elasticity.
Resumo:
Renin is cleaved from its precursor prorenin into mature renin. We investigated the impact of the renin proregion on the generation and secretion of enzymatically active renin. We compared the effects of the following sequences of human prorenin with those of wild type prorenin[1-383]: prosequence [1-43], hinge sequence [1-62], Des[1-43]prorenin ("renin"), Des[1-62]prorenin and prorenin[N260]. These sequences were individually expressed in CV1 cells (constitutive pathway model) and AtT20 cells (regulated and constitutive pathways model), and Des[1-43]prorenin was also coexpressed together with the different prosequences. Renin concentration and activity were measured in cell extracts and culture media. Deletion of the prosequence reduces renin activity in both cell types, but it leaves (total) renin concentration unchanged. Coexpression of the prosequence with renin enhances renin secretion in both cell types: Constitutively secreted renin is enhanced by coexpression of renin together with any of the prosequence containing molecules [1-43], [1-62] or prorenin[N260]. Immunofluorescence in AtT20 cells shows lysosomal typical labeling of prorenin and Des[1-43]prorenin. In AtT20 cells expressing prorenin[1-383], stimulation of regulated secretion increases prorenin but not renin release. The renin prosequence [1-43] optimizes renin activity possibly through appropriate protein folding and it enhances the constitutive secretion of (pro)renin. The major part of generated renin may be targeted to lysosomes.
Resumo:
BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic-inflammatory disease of the esophagus, characterized by esophagus-related symptoms and a dense tissue eosinophilia, both refractory to proton pump inhibitors. Topical corticosteroids have proven effective in inducing clinical and histologic remission. However, a long-term strategy for the management of this chronic disease is not yet defined. METHODS: In a randomized, double-blind, placebocontrolled, long-term trial, we evaluated the efficacy of twice-daily 0.25 mg swallowed budesonide in maintaining a remission in adult EoE with prior response to induction therapy. Pre- and post-treatment disease activity was assessed clinically, endoscopically, histologically, by immunofluorescence and by high-resolution endosonography. The primary end point was the ability to maintain histologic remission (<5 eos/hpf) of EoE in. Secondary end points were the efficacy on symptom control and on tissue remodeling as well as the determination of the safety of long-term esophageal administration of topical corticosteroids. RESULTS: During a 50-week therapy of quiescent EoE with low-dose budesonide the esophageal eosinophil load (ECP staining) increased from 1.1 to 29.9 eos/hpf, but under placebo the increase was significantly larger (0.5 to 51.1 eos/hpf; p=0.01). At the end of the studyperiod, 35.7% (5/14) of the budesonide patients were in complete and 14.3% (2/14) in partial histologic remission; with placebo no patient was in complete and 28.6% (4/14) were in partial remission (p=0.0647). The increase of the symptom score was markedly lower in budesonide- (0.79 to 2.29 points) than in placebo-patients (0.71 to 4.00 points; p=0.0875). The median time to relapse of symptoms was >125 days in the budesonide and 95 days in the placebo group (p = 0.14). Measured by high-resolution endosonography, all EoE patients had pre-treatment a highly thickened esophageal wall compared with healthy controls (3.05±1.08 mm vs. 2.18±0.35 mm; p<0.0001). Long-term topical budesonide reduced mainly the thickness of the superficial wall layers (mucosa, 0.75 mm to 0.45 mm; p=0.025) whereas the response of the deeper layers was less pronounced (submucosa 1.31 to 1.08 mm; p=0.19 and muscularis 0.82 to 0.76 mm; p=0.72). Budesonide did not evoke any mucosal atrophy. CONCLUSIONS: This study clearly demonstrates that 1) Untreated eosinophil inflammation results in an impressive remodeling of the esophagus; 2) A therapy is therefore needed; 3) The high relapse rate after short-term therapy requires a long-term management and 4) Maintenance treatment with budesonide is well tolerated and keeps half of the patients in remission.
Resumo:
hShroom1 (hShrm1) is a member of the Apx/Shroom (Shrm) protein family and was identified from a yeast two-hybrid screen as a protein that interacts with the cytoplasmic domain of melanoma cell adhesion molecule (MCAM). The characteristic signature of the Shrm family is the presence of a unique domain, ASD2 (Apx/Shroom domain 2). mRNA analysis suggests that hShrm1 is expressed in brain, heart, skeletal muscle, colon, small intestine, kidney, placenta and lung tissue, as well a variety of melanoma and other cell lines. Co-immunoprecipitation and bioluminescence resonance energy transfer (BRET) experiments indicate that hShrm1 and MCAM interact in vivo and by immunofluorescence microscopy some co-localization of these proteins is observed. hShrm1 partly co-localises with beta-actin and is found in the Triton X-100 insoluble fraction of melanoma cell extracts. We propose that hShrm1 is involved in linking MCAM to the cytoskeleton.