981 resultados para IMBHs, Globular Clusters Core Dynamics, SINFONI, IFU, Adaptive Optics SPectroscopy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we present a unique high-resolution Holocene record of oceanographic and climatic change based on analyses of diatom assemblages combined with biomarker data from a sediment core collected from the Vega Drift, eastern Antarctic Peninsula (EAP). These data add to the climate framework already established by high-resolution marine sedimentary records from the Palmer Deep, western Antarctic Peninsula (WAP). Heavy sea ice conditions and reduced primary productivity were observed prior to 7.4 ka B.P. in relation with the proximity of the glacial ice melt and calving. Subsequent Holocene oceanographic conditions were controlled by the interactions between the Westerlies-Antarctic Circumpolar Current (ACC)-Weddell Gyre dynamics. A warm period characterized by short seasonal sea ice duration associated with a southern shift of both ACC and Westerlies field persisted until 5 ka B.P. This warm episode was then followed by climate deterioration during the middle-to-late Holocene (5 to 1.9 ka B.P.) with a gradual increase in annual sea ice duration triggered by the expansion of the Weddell Gyre and a strong oceanic connection from the EAP to the WAP. Increase of benthic diatom species during this period was indicative of more summer/autumn storms, which was consistent with changes in synoptic atmospheric circulation and the establishment of low- to high-latitude teleconnections. Finally, the multicentennial scale variability of the Weddell Gyre intensity and storm frequency during the late Holocene appeared to be associated with the increased El Niño-Southern Oscillation frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ice-rich permafrost landscapes are sensitive to climate and environmental change due to the melt-out of ground ice during thermokarst development. Thermokarst processes in the northern Yukon Territory are currently not well-documented. Lake sediments from Herschel Island (69°36'N; 139°04'W) in the western Canadian Arctic provide a record of thermokarst lake development since the early Holocene. A 727 cm long lake sediment core was analyzed for radiographic images, magnetic susceptibility, granulometry, and biogeochemical parameters (organic carbon, nitrogen, and stable carbon isotopes). Based on eight calibrated AMS radiocarbon dates, the sediment record covers the last ~ 11,500 years and was divided into four lithostratigraphic units (A to D) reflecting different thermokarst stages. Thermokarst initiation at the study area began ~ 11.5 cal ka BP. From ~ 11.5 to 10.0 cal ka BP, lake sediments of unit A started to accumulate in an initial lake basin created by melt-out of massive ground ice and thaw subsidence. Between 10.0 and 7.0 cal ka BP (unit B) the lake basin expanded in size and depth, attributed to talik formation during the Holocene thermal maximum. Higher-than-modern summer air temperatures led to increased lake productivity and widespread terrain disturbances in the lake's catchment. Thermokarst lake development between 7.0 and 1.8 cal ka BP (unit C) was characterized by a dynamic equilibrium, where lake basin and talik steadily expanded into ambient ice-rich terrain through shoreline erosion. Once lakes become deeper than the maximum winter lake ice thickness, thermokarst lake sediments show a great preservation potential. However, site-specific geomorphic factors such as episodic bank-shore erosion or sudden drainage through thermo-erosional valleys or coastal erosion breaching lake basins can disrupt continuous deposition. A hiatus in the record from 1.8 to 0.9 cal ka BP in Lake Herschel likely resulted from lake drainage or allochthonous slumping due to collapsing shore lines before continuous sedimentation of unit D recommenced during the last 900 years.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past decades, remarkable changes in sea-surface temperature (SST) and sea-ice extent have been observed in the marginal seas of the subarctic Pacific. However, little is known about natural climate variability at millennial time scales far beyond instrumental observations. Geological proxy records, such as those derived from marine sediments, offer a unique opportunity to investigate millennial-scale natural climate variability of the Artic and subarctic environments during past glacial-interglacial cycles. Here we provide reconstructions of sea-ice variability inferred from IP25 (Ice Proxy with 25 carbon atoms) sea-ice biomarker and SST fluctuations based on alkenone unsaturation index (UK'37) of the subarctic Pacific realm between 138 and 70 ka. Warmest sea-surface conditions were found during the early Eemian interglacial (128 to 126 ka), exceeding modern SSTs by ~2 °C. The further North Pacific climate evolu- tion is marked by pronounced oscillations in SST and sea-ice extent on millennial time scales, which correspond remarkably well to short-term temperature oscillations known from Green- land and the North Atlantic. These results imply a common forcing, which seems to be closely coupled to dynamics of the Atlantic meridional overturning circulation. However, immediate propagation of such climate fluctuations far beyond the North Atlantic basin suggests a rapid circumpolar coupling mechanism probably acting through the atmosphere, a prerequisite to explain the apparent synchronicity of remote climatic reorganizations in the subarctic Pacific.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador: