504 resultados para ICTIOFAUNA DEMERSAL
Resumo:
En el Perú, la pesquería más importante está dirigida al recurso anchoveta (Engraulis ringens), el cual es extraído con red de cerco, sin embargo, este arte de pesca no es 100% selectivo, generando así capturas incidentales. Esta investigación tiene como objetivo analizar cuantitativamente el efecto de la pesquería de anchoveta sobre los recursos de la fauna acompañante mediante el estudio de diferencias espacio-temporales en términos de captura y composición específica de la ictiofauna que conformó la captura incidental en todo el litoral peruano proveniente de la flota industrial durante el periodo 2003-2011. Los resultados muestran valores de captura incidental significativamente mayores en la región sur del litoral peruano a comparación de la región norte y centro, principalmente durante los años 2003 y 2006, aunque la mayor riqueza de especies fue encontrada en la región norte. Por otro lado, dentro de la composición de la captura incidental a nivel especifico destacó la presencia constante de la Caballa (Scomber japonicus), Bagre (Galeichthys peruvianus) y Múnida (Pleuroncodes monodon) en la región norte, Lorna (Sciaena deliciosa), Pejerrey (Odontesthes regia regia), y Múnida (Pleuroncodes monodon) en la región centro y Jurel (Trachurus picturatus murphyi), Caballa (Scomber japonicus), Lorna (Sciaena deliciosa), Pejerrey (Odontesthes regia regia), Múnida (Pleuroncodes monodon), Camotillo (Diplectrum conceptione) y Pampanito (Trachinotus paitensis) en la región sur. Sin embargo, los mayores volúmenes capturados se debieron a recursos costeros y fueron capturados por la flota industrial de acero en la región sur del litoral peruano.
Resumo:
The abundance and community composition of the endofauna in 2 species of sponge, Haliclona sp. 1 and Haliclona sp. 2 (phylum Porifera: order Haplosclerida), were examined at different sites on the slope at Heron Island Reef, in the southern Great Barrier Reef, on 2 separate occasions. Both species of Haliclona Occupy Similar habitats on the reef slope and are often found living adjacent to each other, but the major groups of secondary metabolites and the gross external morphology in the 2 species of sponge are different. The 2 species of sponge supported significantly different endofaunal communities, with Haliclona sp. 2 Supporting 3 to 4 times more individuals than Haliclona sp. 1. Fewer demersal zooplankton (copepods), nematodes and some peracarid crustaceans were found in Haliclona sp. I compared with Haliclona sp. 2. There were also differences in the numbers of spionid, nereidid and syllid. polychaetes living in the 2 species of sponge. The only taxon that was more abundant in Haliclona sp. 1 than Haliclona sp. 2 was the spionid Polydorella prolifera, and this difference was only evident on 1. of the 2 occasions. The amount of free space (pores, channels, cavities) for a given weight of sponge was only 19% greater in Haliclona sp. 2 than in Haliclona sp. 1, suggesting other factors, such as the differences in the allelochemicals, may have a role in determining the numbers and types of animals living in these 2 species of sponge.
Resumo:
Variation in the rate at which parasitic gnathiid isopod juveniles emerged from the benthos at Lizard Island, Great Barrier Reef, Australia, was examined (I) every 4 or 8 h throughout the day and night over a 24 h period, (2) over a 12 h period during the day or night, and (3) during different lunar phases (weeks). The number of gnathiids sampled per 4 or 8 h was low, with only 30% of the traps containing gnathiids and the abundance ranging from 0 to 3 gnathiids m(-2). The number of gnathiids that emerged over 12 h, in contrast, ranged from 0 to 36 m(-2). During the third and fifth weeks sampled, more gnathiids emerged during the day than at night. This coincided with the full moon and new moon. Most gnathiids that emerged from the reef during the day (98 %) had not fed, in contrast to those sampled at night (71%). Of the gnathiids with no engorged gut, most (97 %) of those collected during the day were small (II. mm) compared to those collected at night (19%), the latter being mostly >1 mm. Of the gnathiids with an engorged gut, most were sampled at night (83 %) and 97 % were >1 mm in size. These percentages suggest differences in the emergence behaviour among Life stages or species of gnathiids. This study, which shows that gnathiids do emerge during the day and supports other studies showing that gnathiids also attack fishes during the day, has important implications for understanding the role of cleaner fish and their main food source, gnathiids, as it shows there is a constant source of gnathiids emerging from the reef during the day and night in search of hosts.
Resumo:
Whereas many land predators disappeared before their ecological roles were studied, the decline of marine apex predators is still unfolding. Large sharks in particular have experienced rapid declines over the last decades. In this study, we review the documented changes in exploited elasmobranch communities in coastal, demersal, and pelagic habitats, and synthesize the effects of sharks on their prey and wider communities. We show that the high natural diversity and abundance of sharks is vulnerable to even light fishing pressure. The decline of large predatory sharks reduces natural mortality in a range of prey, contributing to changes in abundance, distribution, and behaviour of small elasmobranchs, marine mammals, and sea turtles that have few other predators. Through direct predation and behavioural modifications, top-down effects of sharks have led to cascading changes in some coastal ecosystems. In demersal and pelagic communities, there is increasing evidence of mesopredator release, but cascading effects are more hypothetical. Here, fishing pressure on mesopredators may mask or even reverse some ecosystem effects. In conclusion, large sharks can exert strong top-down forces with the potential to shape marine communities over large spatial and temporal scales. Yet more empirical evidence is needed to test the generality of these effects throughout the ocean.
Resumo:
During the 1960s, water management practices resulted in the conversion of the wetlands that fringe northeastern Florida Bay (USA) from freshwater/oligohaline herbaceous marshes to dwarf red mangrove forests. Coincident with this conversion were several ecological changes to Florida Bay’s fauna, including reductions in the abundances of top trophic-level consumers: piscivorous fishes, alligators, crocodiles, and wading birds. Because these taxa rely on a common forage base of small demersal fishes, food stress has been implicated as playing a role in their respective declines. In the present study, we monitored the demersal fishes seasonally at six sites over an 8-year time period. During monitoring, extremely high rainfall conditions occurred over a 3.5-year period leading to salinity regimes that can be viewed as “windows” to the area’s natural past and future restored states. In this paper, we: (1) examine the changes in fish communities over the 8-year study period and relate them to measured changes in salinity; (2) make comparisons among marine, brackish and freshwater demersal fish communities in terms of species composition, density, and biomass; and (3) discuss several implications of our findings in light of the intended and unintended water management changes that are planned or underway as part of Everglades restoration. Results suggest the reduction in freshwater flow to Florida Bay over the last several decades has reduced demersal fish populations, and thus prey availability for apex consumers in the coastal wetlands compared to the pre-drainage inferred standard. Furthermore, greater discharge of freshwater toward Florida Bay may result in the re-establishment of pre-1960s fauna, including a more robust demersal-fish community that should prompt increases in populations of several important predatory species.
Resumo:
T he socio - economy of the coastal municipalities of Rio Grande do Norte semiarid coast was analyzed th r ou g h by the actors, ant hropogenic implications, fishing environment and composition of its fish fauna, as well as the trend of product ion landed by the artisanal fleet with the aim of identifying the sustainability and management. In this study, were used participatory methodologies, monthly data of rainfall between September 2001 and December 2010; landings of the artisanal fleet during January 2001 to December 2010; and socioeconomic (IBGE, 2002/2010), (IDEMA, 2011/2012), (MPA, 2010; 2012), UNDP and MS (2013). Based on these data, we performed analysis of variance were performed using the method of Analytic Hierarchy Process (HAP) and s tatistical models of multiple regression and time series. It was identified that the occupation of the coastal and marine zone through salt industry, tourism, shrimp farming, oil and gas and wind energy reconfigured the environment and attracted new actors . Rainfall influenced the catches, of which 35% occur in the rainy season, 40% in the dry season and 25% independent. Production increased 55%, in the period analyzed , being landed in 31 ports spread over 11 municipalities, cap tured in environments mangrov e/ estuarine (23%), coastal (46%) and oceanic (31%). Despite market up 41 species, were commercialized in the region production concentrated in eight, mainly landed in Macau and Caiçara North, by vessels of small and medium - sized (motorized and sailboats) . Highlights included three species ( Hirundichthys affins , Coryphaena hippurus and Opisthonema oglinum ), which together accounted for 63.3% of the whole volume. It was found that the motorized vessels tripled in number while sailboats reduced by half. Landin gs by different types of vessels tend to increase over time, while the small sailboats vessels, decrease. The introduction of more new motorized vessels and sailboats also tend to increase production. The study concluded that GDP and HDI of coastal countie s increased however inequality persisted. The potential of artisanal fishing is in the stage “ unfavorable ” of development and the trend in fish production is to grow over time and with the entry of more vessels. However, it is urgent that the state actions to promote and enhance planning to restore fish stocks in a sustainable and profitable fisheries standards. Therefore, it is recommend the strategic use of natural resources in a sustainable development perspective.
Resumo:
There are several abiotic factors reported in the literature as regulators of the distribution of fish species in marine environments. Among them stand out structural complexity of habitat, benthic composition, depth and distance from the coast are usually reported as positive influencers in the diversity of difentes species, including reef fish. These are dominant elements in reef systems and considered high ecological and socioeconomic importance. Understanding how the above factors influence the distribution and habitat use of reef fish communities are important for their management and conservation. Thus, this study aims to evaluate the influence of these variables on the community of reef fishes along an environmental gradient of depth and distance from shore base in sandstone reefs in the coast of state of Rio Grande do Norte, Brazil. These variables are also used for creating a simple predictive model reef fish biomass for the environment studied. Data collection was performed through visual surveys in situ, and recorded environmental data (structural complexity of habitat, type of coverage of the substrate, benthic invertebrates) and ecological (wealth, abundance and reef fish size classes). As a complement, information on the diet were raised through literature and the biomass was estimated from the length-weight relationship of each species. Overall, the reefs showed a low coverage by corals and the Shallow reefs, Intermediate I and II dominated by algae and the Funds by algae and sponges. The complexity has increased along the gradient and positively influenced the species richness and abundance. Both attributes influenced in the structure of the reef fish community, increasing the richness, abundance and biomass of fish as well as differentiating the trophic structure of the community along the depth gradient and distance from the coast. Distribution and use of habitat by recifas fish was associated with food availability. The predictor model identified depth, roughness and coverage for foliose algae, calcareous algae and soft corals as the most significant variables influencing in the biomass of reef fish. In short, the description and understanding of these patterns are important steps to elucidate the ecological processes. In this sense, our approach provides a new understanding of the structure of the reef fish community of Rio Grande do Norte, allowing understand a part of a whole and assist future monitoring actions, evaluation, management and conservation of these and other reefs of Brazil.
Resumo:
Seals and humans often target the same food resource, leading to competition. This is of mounting concern with fish stocks in global decline. Grey seals were tracked from southeast Ireland, an area of mixed demersal and pelagic fisheries, and overlap with fisheries on the Celtic Shelf and Irish Sea was assessed. Overall, there was low overlap between the tagged seals and fisheries. However, when we separate active (e.g. trawls) and passive gear (e.g. nets, lines) fisheries, a different picture emerged. Overlap with active fisheries was no different from that expected under a random distribution, but overlap with passive fisheries was significantly higher. This suggests that grey seals may be targeting the same areas as passive fisheries and/or specifically targeting passive gear. There was variation in foraging areas between individual seals suggesting habitat partitioning to reduce intra-specific competition or potential individual specialisation in foraging behaviour. Our findings support other recent assertions that seal/fisheries interactions in Irish waters are an issue in inshore passive fisheries, most likely at the operational and individual level. This suggests that seal population management measures would be unjustifiable, and mitigation is best focused on minimizing interactions at nets.
Resumo:
European continental shelf seas have experienced intense warming over the past 30 years1. In the North Sea, fish have been comprehensively monitored throughout this period and resulting data provide a unique record of changes in distribution and abundance in response to climate change2, 3. We use these data to demonstrate the remarkable power of generalized additive models (GAMs), trained on data earlier in the time series, to reliably predict trends in distribution and abundance in later years. Then, challenging process-based models that predict substantial and ongoing poleward shifts of cold-water species4, 5, we find that GAMs coupled with climate projections predict future distributions of demersal (bottom-dwelling) fish species over the next 50 years will be strongly constrained by availability of habitat of suitable depth. This will lead to pronounced changes in community structure, species interactions and commercial fisheries, unless individual acclimation or population-level evolutionary adaptations enable fish to tolerate warmer conditions or move to previously uninhabitable locations.
Resumo:
European continental shelf seas have experienced intense warming over the past 30 years1. In the North Sea, fish have been comprehensively monitored throughout this period and resulting data provide a unique record of changes in distribution and abundance in response to climate change2, 3. We use these data to demonstrate the remarkable power of generalized additive models (GAMs), trained on data earlier in the time series, to reliably predict trends in distribution and abundance in later years. Then, challenging process-based models that predict substantial and ongoing poleward shifts of cold-water species4, 5, we find that GAMs coupled with climate projections predict future distributions of demersal (bottom-dwelling) fish species over the next 50 years will be strongly constrained by availability of habitat of suitable depth. This will lead to pronounced changes in community structure, species interactions and commercial fisheries, unless individual acclimation or population-level evolutionary adaptations enable fish to tolerate warmer conditions or move to previously uninhabitable locations.
Resumo:
3400 pyritized internal moulds of Upper Devonian, Triassic, Jurassic and Lower Cretaceous ammonoids show various soft tissue attachment structures. They are preserved as regularly distributed black patterns on the moulds. All structures can be interpreted as attachment areas of muscles, ligaments and intracameral membranes. Paired structures are developed along the umbilicus and on the flanks of the moulds, unpaired ones appear on the middle of their dorsal and ventral sides. Strong lateral muscles cause paired twin lines on the flanks of the phragmocone and of the body chamber. A ventral muscle is deduced from small rounded or crescent shaped spots in front of each septum on the ventral side. These spots are often connected, forming a band-like structure. Broad dark external bands on the ventral side of the phragmocone, ventral preseptal areas in the posterior part of the living chamber, small twin lines or oval shaped areas on the ventral side of the living chamber represent paired or unpaired attachment areas of the hyponome muscle. A middorsal muscle is documented by small roughened areas in front of each dorsal lobe. Dark spots along the umbilicus, often connected and thus forming a band-like structure (tracking band), are remains of a pair of small dorsolateral muscles at the posterior end of the soft body. Dark bands, lines and rows of small crescent shaped structures behind the tips of sutural lobes are due to spotlike fixation places of the posterior part of the mantle and their translocation before subsequent septal secretion. Devonian goniatites had a paired system of lateral and ventrolateral muscles preserved on the moulds as black or incised lines on the flanks of the living chamber and as dark preseptal areas, ventrally indented. These structures represent the attachment areas of paired lateral cephalic and paired ventral hyponome retractors. Fine black lines on the phragmocone situated parallel to the sutures (pseudosutures) represent a rhythmical secretion of camera! membranes during softbody translocation. Goniatites had a paired system of lateral and ventrolateral muscles, whilst Neoammonoids have a paired lateral and dorsolateral system, and, additionally, an unpaired system on the ventral and on the dorsal side. Mesoammonoids show only a paired lateral and an unpaired dorsal one. Fine black lines situated parallel to the saddles and behind the lobes of the suture line can be interpreted as structures left during softbody translocation and a temporary attachment of rhythmical secreted cameral membranes. Cameral membranes had supported the efficiency of the phragmocone. Only some of the observed structures are also present in recent Nautilus. Differences in the form and position of attachment sites between ammonoids and recent Nautilus indicate different soft body organizations between ammonoids and nautiloids. The attachment structures of goniatites especially of tornoceratids can be compared with those of Nautilus which indicates Richter - Gewebeansatz-Strukturen bei Ammonoideen 3 a comparable mode of life. Differences in the form and position of attachment structures between goniatites and ammonites may indicate an increasing differentiation of the muscular system in the phylogeny of this group. Different soft body organization may depend on shell morphology and on a different mode of life. On the modification or reduction of distinct muscle systems ammonoids can be assigned to different ecotypes. Based on shell morphology and the attachment areas of cephalic and hyponome retractor muscles two groups can be subdivided: - Depressed, evolute morphotypes with longidome body-chambers show only small ventral hyponome retractor muscles. Lateral cephalic retractors are not developed. These morphotypes are adapted to a demersal mode of life. Without strong cephalic retractor muscles no efficient jet propulsion can be produced. These groups represent vertical migrants with efficient phragmocone properties (multilobate sutures, cameral membranes, narrow septal spacing). - Compressed, involute moiphotypes with brevidome body-chambers show strong cephalic and hyponome retractor muscles and represent a group of active swimmers. These morphotypes were able to live at different depths, in the free water column or/and near the seafloor. They are not confined only to one habitat. Most of the examined genera and species belong to this group. Changes of the attachment structures in the course of ontogeny confirm that juveniles of Amaltheus and Quenstedtoceras lived as passive planche drifters in upper and intermediate parts of the free water column after hatching. At the end of the juvenile stage with a shell diameter of 0,3 - 0,5 cm cephalic retractor muscles developed. With the beginning of an active swimming mode of life (neanic stage) the subadult animals left the free water column and moved into shallow water habitats. Fuciniceras showed no marked changes in the attachment structures during ontogeny. This indicates that there occur no differences in the mode of life between juvenile and adult growth stages. Based on attachment structures and shell morphology of Devonian goniatites their relation to the systematic position permits statements about probable phylogenetic relationships between the Cheiloceratidae and Tornoceratidae. In some cases attachment structures of ammonites permit statements about phylogenetic relationships on family and genus level.
Resumo:
O golfinho-comum (Delphinus delphis) é uma das espécies de cetáceos mais abundantes e mais amplamente distribuídas em todo o planeta, sendo a espécie mais abundante ao longo da costa continental portuguesa. Algumas das suas principais presas apresentam um elevado interesse comercial estando por isso, muitas vezes, associado a capturas acidentais em artes de pesca. Contudo, estudos mais recentes sobre os hábitos alimentares desta espécie na costa portuguesa são escassos. Assim, este estudo visa contribuir para a avaliação da ecologia alimentar deste cetáceo na costa portuguesa através de índices de importância numérica, ocorrência e do peso estimado, permitindo descrever a dieta não só em termos qualitativos, mas também em termos quantitativos. Foram examinados os conteúdos estomacais de 55 golfinhoscomuns arrojados na costa continental portuguesa (norte e centro) entre 2004 e 2015. De um total de 6699 presas identificadas, 66% pertenciam à classe dos peixes, 32% eram cefalópodes e 3% eram crustáceos. As espécies-presa de peixes mais importantes em termos de importância numérica foram os góbios (Gobiidae) e o carapau (Trachurus sp.). Em relação à ocorrência foram o góbio (Gobiidae) e a sardinha (Sardina pilchardus), seguidas de carapau, as espécies predominantes. Relativamente ao peso, a sardinha foi a espécie-presa predominante, seguida de faneca (Trisopterus luscus) e carapau. Quanto aos cefalópodes, a lula-bicuda (Alloteuthis sp.) foi a espécie mais importante, tanto em termos de importância numérica como em termos de ocorrência. A lula-comum (Loligo sp.) foi a mais importante em termos de peso total estimado. As espécies demersais dominaram a dieta do golfinho-comum, com uma percentagem numérica de 40%. Foram detetadas diferenças entre machos e fêmeas na composição da dieta relativamente à sardinha. Foram detetadas diferenças entre indivíduos maturos e imaturos na composição da dieta relativamente à lula-bicuda. A diversidade de presas observada nos conteúdos estomacais do golfinho-comum sugere um comportamento oportunista, consumindo as presas mais abundantes, localmente. As interações com as artes de pesca podem levar a uma elevada mortalidade destes mamíferos marinhos. Deste modo, a realização de estudos sobre os hábitos alimentares de cetáceos permitem uma melhor compreensão das possíveis interações com a pesca, e a melhoria de estratégias de conservação para evitar a morte destes animais.
Resumo:
Anthropogenic activities and land-based inputs into the sea may influence the trophic structure and functioning of coastal and continental shelf ecosystems, despite the numerous opportunities and services the latter offer to humans and wildlife. In addition, hydrological structures and physical dynamics potentially influence the sources of organic matter (e.g., terrestrial versus marine, or fresh material versus detrital material) entering marine food webs. Understanding the significance of the processes that influence marine food webs and ecosystems (e.g., terrestrial inputs, physical dynamics) is crucially important because trophic dynamics are a vital part of ecosystem integrity. This can be achieved by identifying organic matter sources that enter food webs along inshore–offshore transects. We hypothesised that regional hydrological structures over wide continental shelves directly control the benthic trophic functioning across the shelf. We investigated this issue along two transects in the northern ecosystem of the Bay of Biscay (north-eastern Atlantic). Carbon and nitrogen stable isotope analysis (SIA) and fatty acid analysis (FAA) were conducted on different complementary ecosystem compartments that include suspended particulate organic matter (POM), sedimentary organic matter (SOM), and benthic consumers such as bivalves, large crustaceans and demersal fish. Samples were collected from inshore shallow waters (at ∼1 m in depth) to more than 200 m in depth on the offshore shelf break. Results indicated strong discrepancies in stable isotope (SI) and fatty acid (FA) compositions in the sampled compartments between inshore and offshore areas, although nitrogen SI (δ15N) and FA trends were similar along both transects. Offshore the influence of a permanently stratified area (described previously as a “cold pool”) was evident in both transects. The influence of this hydrological structure on benthic trophic functioning (i.e., on the food sources available for consumers) was especially apparent across the northern transect, due to unusual carbon isotope compositions (δ13C) in the compartments. At stations under the cold pool, SI and FA organism compositions indicated benthic trophic functioning based on a microbial food web, including a significant contribution of heterotrophic planktonic organisms and/or of SOM, notably in stations under the cold pool. On the contrary, inshore and shelf break areas were characterised by a microalgae-based food web (at least in part for the shelf break area, due to slope current and upwelling that can favour fresh primary production sinking on site). SIA and FAA were relevant and complementary tools, and consumers better medium- to long-term system integrators than POM samples, for depicting the trophic functioning and dynamics along inshore–offshore transects over continental shelves.