946 resultados para Hypothesis
Resumo:
Volitional animal resistance training constitutes an important approach to modeling human resistance training. However, the lack of standardization protocol poses a frequent impediment to the production of skeletal muscle hypertrophy and the study of related physiological variables (i.e., cellular damage/inflammation or metabolic stress). Therefore, the purposes of the present study were: (1) to test whether a long-term and low frequency experimental resistance training program is capable of producing absolute increases in muscle mass; (2) to examine whether cellular damage/inflammation or metabolic stress is involved in the process of hypertrophy. In order to test this hypothesis, animals were assigned to a sedentary control (C, n = 8) or a resistance trained group (RT, n = 7). Trained rats performed 2 exercise sessions per week (16 repetitions per day) during 12 weeks. Our results demonstrated that the resistance training strategy employed was capable of producing absolute mass gain in both soleus and plantaris muscles (12%, p<0.05). Furthermore, muscle tumor necrosis factor (TNF-alpha) protein expression (soleus muscle) was reduced by 24% (p<0.01) in trained group when compared to sedentary one. Finally, serum creatine kinase (CK) activity and serum lactate concentrations were not affected in either group. Such information may have practical applications if reproduced in situations where skeletal muscle hypertrophy is desired but high mechanical stimuli of skeletal muscle and inflammation are not. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The purpose of this study was to test the hypothesis that in obese children: 1) Ventilatory efficiency (VentE) is decreased during graded exercise; and 2) Weight loss through diet alone (D) improves VentE, and 3) diet associated with exercise training (DET) leads to greater improvement in VentE than by D. Thirty-eight obese children (10 +/- 0.2 years; BMI > 95(th) percentile) were randomly divided into two Study groups: D (n=17; BMI = 30 +/- 1 kg/m(2)) and DET (n = 21; 28 +/- 1 kg/m(2)). Ten lean children were included in a control group (10 +/- 0.3 years; 17 +/- 0.5 kg/m(2)). All children performed maximal treadmill testing with respiratory gas analysis (breath-by-breath) to determine the ventilatory anaerobic threshold (VAT) and peak oxygen consumption (VO(2) peak). VentE was determined by the VE/VCO(2) method at VAT. Obese children showed lower VO(2) peak and lower VentE than controls (p < 0.05). After interventions, all obese children reduced body weight (p < 0.05). D group did not improve in terms of VO(2) peak or VentE (p > 0.05). In contrast, the DET group showed increased VO(2) peak (p = 0.01) and improved VentE(Delta VE/VCO(2) = -6.1 +/- 0.9; p = 0.01). VentE is decreased in obese children, where weight loss by means of DET, but not D alone, improves VentE and cardiorespiratory fitness during graded exercise.
Resumo:
In this study the hypothesis that interceptive movements are controlled on the basis of expectancy of time to target arrival was tested. The study was conducted through assessment of temporal errors and kinematics of interceptive movements to a moving virtual target. Initial target velocity was kept unchanged in part of the trials, and in the others it was decreased 300 ms before the due time of target arrival at the interception position, increasing in 100 ms time to target arrival. Different probabilities of velocity decrease ranging from 25 to 100% were compared. The results revealed that while there were increasing errors between probabilities of 25 and 75% for unchanged target velocity, the opposite relationship was observed for target velocity decrease. Kinematic analysis indicated that movement timing adjustments to target velocity decrease were made online. These results support the conception that visuomotor integration in the interception of moving targets is mediated by an internal forward model whose weights can be flexibly adjusted according to expectancy of time to target arrival.
Resumo:
Aging is known to have a degrading influence on many structures and functions of the human sensorimotor system. The present work assessed aging-related changes in postural sway using fractal and complexity measures of the center of pressure (COP) dynamics with the hypothesis that complexity and fractality decreases in the older individuals. Older subjects (68 +/- 4 years) and young adult subjects (28 +/- 7 years) performed a quiet stance task (60 s) and a prolonged standing task (30 min) where subjects were allowed to move freely. Long-range correlations (fractality) of the data were estimated by the detrended fluctuation analysis (DFA); changes in entropy were estimated by the multi-scale entropy (MSE) measure. The DFA results showed that the fractal dimension was lower for the older subjects in comparison to the young adults but the fractal dimensions of both groups were not different from a 1/f noise, for time intervals between 10 and 600 s. The MSE analysis performed with the typically applied adjustment to the criterion distance showed a higher degree of complexity in the older subjects, which is inconsistent with the hypothesis that complexity in the human physiological system decreases with aging. The same MSE analysis performed without adjustment showed no differences between the groups. Taken all results together, the decrease in total postural sway and long-range correlations in older individuals are signs of an adaptation process reflecting the diminishing ability to generate adequate responses on a longer time scale.
Resumo:
Exercise training (ET) is a coadjuvant therapy in preventive cardiology. It delays cardiac dysfunction and exercise intolerance in heart failure (HF); however, the molecular mechanisms underlying its cardioprotection are poorly understood. We tested the hypothesis that ET would prevent Ca2+ handling abnormalities and ventricular dysfunction in sympathetic hyperactivity-induced HF mice. A cohort of male wildtype (WT) and congenic (alpha 2A/alpha 2C)-adrenoceptor knockout ((alpha 2A/alpha 2C)ARKO) mice with C57BL6/J genetic background (3-5 mo of age) were randomly assigned into untrained and exercise-trained groups. ET consisted of 8-wk swimming session, 60 min, 5 days/wk. Fractional shortening (FS) was assessed by two-dimensional guided M-mode echocardiography. The protein expression of ryanodine receptor (RyR), phospho-Ser(2809)-RyR, sarcoplasmic reticulum Ca2+ ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLN), phospho-Ser(16)-PLN, and phospho-Thr(17)-PLN were analyzed by Western blotting. At 3 mo of age, no significant difference in FS and exercise tolerance was observed between WT and (alpha 2A/alpha 2C)ARKO mice. At 5 mo, when cardiac dysfunction is associated with lung edema and increased plasma norepinephrine levels, (alpha 2A/alpha 2C)ARKO mice presented reduced FS paralleled by decreased SERCA2 (26%) and NCX (34%). Conversely, (alpha 2A/alpha 2C)ARKO mice displayed increased phospho-Ser(16)-PLN (76%) and phospho-Ser(2809)-RyR (49%). ET in (alpha 2A/alpha 2C)ARKO mice prevented exercise intolerance, ventricular dysfunction, and decreased plasma norepinephrine. ET significantly increased the expression of SERCA2 (58%) and phospho-Ser(16)-PLN (30%) while it restored the expression of phospho-Ser(2809)-RyR to WT levels. Collectively, we provide evidence that improved net balance of Ca2+ handling proteins paralleled by a decreased sympathetic activity on ET are, at least in part, compensatory mechanisms against deteriorating ventricular function in HF.
Resumo:
The hypothesis that salivary cortisol would increase and salivary immunoglobulin A (IgA) decrease after a kickboxing match was tested among 20 male athletes. Saliva samples collected before and after the match were analyzed. Salivary cortisol and salivary IgA concentrations (absolute concentration, salivary IgAabs) and the secretion rate of IgA (salivary IgArate) were measured by enzyme-linked immunosorbent assay. A Wilcoxon test for paired samples showed significant increases in salivary cortisol from pre- to postmatch. No significant changes were observed in salivary IgAabs or secretory IgArate and saliva flow rate. This study indicates that a kickboxing match might increase salivary concentration and thereafter it could be considered a significant source of exercise-related stress. On the other hand, the effect of a kickboxing match on mucosal immunity seems not to be relevant.
Resumo:
Moreira, A, Arsati, F, Cury, PR, Franciscon, C, Oliveira, PR, and Araujo, VC. Salivary immunoglobulin a response to a match in top-level brazilian soccer players. J Strength Cond Res 23(7): 1968-1973, 2009-It has been suggested that several parameters of mucosal immunity, including salivary immunoglobulin A (s-IgA), are affected by heavy exercise either in field sports or in the laboratory environment. Few observations have been made during a true sporting environment, particularly in professional soccer. We tested the hypothesis that salivary IgA levels will be decreased after a 70-minute regulation in a top-level professional soccer friendly match. Saliva samples from 24 male professional soccer players collected before and after the match were analyzed. Salivary immunoglobulin A concentration was measured by enzyme-linked immunosorbent assay and expressed as the absolute concentration (s-IgAabs), s-IgA relative to total protein concentration (IgA-Pro), and the secretion rate of IgA (s-IgArate). Rate of perceived exertion (RPE) was used to monitor the exercise intensity. The paired t-test showed no significant changes in s-IgAabs and s-IgArate (p > 0.05) from PRE to POST match. However, a significant (p < 0.05) increase in total protein concentration (1.46 +/- 0.4 to 2.00 +/- 07) and a decrease in IgA-Pro were observed. The best and most significant correlation was obtained with the RPE and changes in IgA-Pro (rs = -0.43) and could indicate that this expression may be an interesting marker of intensity in a soccer match. However, further investigation regarding exercise intensity, protein concentration, and immune suppression, particularly in team sports, is warranted. From a practical application, the variability of the responses among the players leads us to suggest that there is a need to individually analyze the results with team sports. Some athletes showed a decrease in s-IgA expressions, suggesting the need for taking protective actions to minimize contact with cold viruses or even reducing the training load.
Resumo:
We have tested the hypothesis that salivary cortisol increases after a competitive training match in top-level male professional soccer players divided in team A (n = 11) versus team B (n = 11). Saliva samples collected before and after the match were analyzed. Salivary cortisol concentrations were measured by enzyme-linked immunosorbent assay. The results from a two-way ANOVA with repeated measures showed no significant changes in salivary cortisol between either teams or time points (P > 0.05). Further investigation regarding competitive matches in a competition environment is warranted. In summary, the influence of intensive competitive training match alone appears to be minimal on salivary cortisol changes in top-level soccer adapted to this type of stress. From a practical application, the variability of the responses among the players leads us to suggest that there is a need to individually analyse the results with team sports.
Resumo:
The most ordinary finite element formulations for 3D frame analysis do not consider the warping of cross-sections as part of their kinematics. So the stiffness, regarding torsion, should be directly introduced by the user into the computational software and the bar is treated as it is working under no warping hypothesis. This approach does not give good results for general structural elements applied in engineering. Both displacement and stress calculation reveal sensible deficiencies for both linear and non-linear applications. For linear analysis, displacements can be corrected by assuming a stiffness that results in acceptable global displacements of the analyzed structure. However, the stress calculation will be far from reality. For nonlinear analysis the deficiencies are even worse. In the past forty years, some special structural matrix analysis and finite element formulations have been proposed in literature to include warping and the bending-torsion effects for 3D general frame analysis considering both linear and non-linear situations. In this work, using a kinematics improvement technique, the degree of freedom ""warping intensity"" is introduced following a new approach for 3D frame elements. This degree of freedom is associated with the warping basic mode, a geometric characteristic of the cross-section, It does not have a direct relation with the rate of twist rotation along the longitudinal axis, as in existent formulations. Moreover, a linear strain variation mode is provided for the geometric non-linear approach, for which complete 3D constitutive relation (Saint-Venant Kirchhoff) is adopted. The proposed technique allows the consideration of inhomogeneous cross-sections with any geometry. Various examples are shown to demonstrate the accuracy and applicability of the proposed formulation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In this paper a new boundary element method formulation for elastoplastic analysis of plates with geometrical nonlinearities is presented. The von Mises criterion with linear isotropic hardening is considered to evaluate the plastic zone. Large deflections are assumed but within the context of small strain. To derive the boundary integral equations the von Karman`s hypothesis is taken into account. An initial stress field is applied to correct the true stresses according to the adopted criterion. Isoparametric linear elements are used to approximate the boundary unknown values while triangular internal cells with linear shape function are adopted to evaluate the domain value influences. The nonlinear system of equations is solved by using an implicit scheme together with the consistent tangent operator derived along the paper. Numerical examples are presented to demonstrate the accuracy and the validity of the proposed formulation.
Resumo:
The Pirapo river watershed (Parana State, Brazil) compounds a relatively industrialized and urbanized region, undergoing great pressure from the discharge of industrial, agricultural and domestic wastes. We evaluated the environmental quality of ten streams belonging to this watershed in April and June 2008 by performing acute and chronic toxicity tests with Daphnia similis and Ceriodaphnia silvestrii from water and sediment samples. We tested the hypothesis that the streams located in urban areas are more exposed to the influence of pollutants, than those outside the city limits. In addition, we obtained the measures of physical and chemical parameters, and identified the main polluted sources. Contrary to what was expected, the rural streams were more toxic than those located in urban area. These results demonstrate that the water bodies located in rural areas are being affected by the pollution of aquatic ecosystems as far as those found in urban areas, requiring the same attention of environmental managers in relation to its monitoring.
Resumo:
Several studies have shown that austenitic stainless steels are suitable for use in the final phases of orthodontic treatments, such as finishing and retention. These steels demonstrate appropriate mechanical properties, such as high ultimate tensile strength and good corrosion resistance. A new class of materials, the austenic-ferritic stainless steels, is substituting for austenitic stainless steels in several industrial applications where these properties are necessary. This work supports the hypothesis that orthodontic wires of austenic-ferritic stainless steels can replace austenitic stainless steels. The advantages are cost reduction and decrease of the nickel hypersensitivity effect in patients undergoing orthodontic treatments. The object of this study was to evaluate wires of austenitic-ferritic stainless steel SEW 410 Nr. 14517 (Cr26Ni6Mo3Cu3) produced by cold working through rolling and drawing processes. Tests were performed to evaluate the ultimate tensile strength, hardness, ductility, and formability. In accordance with technical standards the wires exhibited ultimate tensile strength and ductility suitable for orthodontic clinical applications. These austenitie-ferritic wires can be an alternative to substitute the common commercial wires of austenic stainless steels with the advantage of decreasing the nickel content.
Resumo:
There are several ways to attempt to model a building and its heat gains from external sources as well as internal ones in order to evaluate a proper operation, audit retrofit actions, and forecast energy consumption. Different techniques, varying from simple regression to models that are based on physical principles, can be used for simulation. A frequent hypothesis for all these models is that the input variables should be based on realistic data when they are available, otherwise the evaluation of energy consumption might be highly under or over estimated. In this paper, a comparison is made between a simple model based on artificial neural network (ANN) and a model that is based on physical principles (EnergyPlus) as an auditing and predicting tool in order to forecast building energy consumption. The Administration Building of the University of Sao Paulo is used as a case study. The building energy consumption profiles are collected as well as the campus meteorological data. Results show that both models are suitable for energy consumption forecast. Additionally, a parametric analysis is carried out for the considered building on EnergyPlus in order to evaluate the influence of several parameters such as the building profile occupation and weather data on such forecasting. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A methodology for rock-excavation structural-reliability analysis that uses Distinct Element Method numerical models is presented. The methodology solves the problem of the conventional numerical models that supply only punctual results and use fixed input parameters, without considering its statistical errors. The analysis of rock-excavation stability must consider uncertainties from geological variability, from uncertainty in the choice of mechanical behaviour hypothesis, and from uncertainties in parameters adopted in numerical model construction. These uncertainties can be analyzed in simple deterministic models, but a new methodology was developed for numerical models with results of several natures. The methodology is based on Monte Carlo simulations and uses principles of Paraconsistent Logic. It will be presented in the analysis of a final slope of a large-dimensioned surface mine.
Resumo:
Light touch of a fingertip on an external stable surface greatly improves the postural stability of standing subjects. The hypothesis of the present work was that a vibrating surface could increase the effectiveness of fingertip signaling to the central nervous system (e.g., by a stochastic resonance mechanism) and hence improve postural stability beyond that achieved by light touch. Subjects stood quietly over a force plate while touching with their right index fingertip a surface that could be either quiescent or randomly vibrated at two low-level noise intensities. The vibratory noise of the contact surface caused a significant decrease in postural sway, as assessed by center of pressure measures in both time and frequency domains. Complementary experiments were designed to test whether postural control improvements were associated with a stochastic resonance mechanism or whether attentional mechanisms could be contributing. A full curve relating body sway parameters and different levels of vibratory noise resulted in a U-like function, suggesting that the improvement in sway relied on a stochastic resonance mechanism. Additionally, no decrease in postural sway was observed when the vibrating contact surface was attached to the subject`s body, suggesting that no attentional mechanisms were involved. These results indicate that sensory cues obtained from the fingertip need not necessarily be associated with static contact surfaces to cause improvement in postural stability. A low-level noisy vibration applied to the contact surface could lead to a better performance of the postural control system.