848 resultados para Hybrid genetic algorithm


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents a quantitative and objective approach to cat ganglion cell characterization and classification. The combination of several biologically relevant features such as diameter, eccentricity, fractal dimension, influence histogram, influence area, convex hull area, and convex hull diameter are derived from geometrical transforms and then processed by three different clustering methods (Ward's hierarchical scheme, K-means and genetic algorithm), whose results are then combined by a voting strategy. These experiments indicate the superiority of some features and also suggest some possible biological implications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents some results of the application on Evolvable Hardware (EHW) in the area of voice recognition. Evolvable Hardware is able to change inner connections, using genetic learning techniques, adapting its own functionality to external condition changing. This technique became feasible by the improvement of the Programmable Logic Devices. Nowadays, it is possible to have, in a single device, the ability to change, on-line and in real-time, part of its own circuit. This work proposes a reconfigurable architecture of a system that is able to receive voice commands to execute special tasks as, to help handicapped persons in their daily home routines. The idea is to collect several voice samples, process them through algorithms based on Mel - Ceptrais theory to obtain their numerical coefficients for each sample, which, compose the universe of search used by genetic algorithm. The voice patterns considered, are limited to seven sustained Portuguese vowel phonemes (a, eh, e, i, oh, o, u).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reliability of power supply is related, among other factors, to the control and protection devices allocation in feeders of distribution systems. In this way, optimized allocation of sectionalizing switches and protection devices in strategic points of distribution circuits, improves the quality of power supply and the system reliability indices. In this work, it is presented a mixed integer non-linear programming (MINLP) model, with real and binary variables, for the sectionalizing switches and protection devices allocation problem, in strategic sectors, aimed at improving reliability indices, increasing the utilities billing and fulfilling exigencies of regulatory agencies for the power supply. Optimized allocation of protection devices and switches for restoration, allows that those faulted sectors of the system can be isolated and repaired, re-managing loads of the analyzed feeder into the set of neighbor feeders. Proposed solution technique is a Genetic Algorithm (GA) developed exploiting the physical characteristics of the problem. Results obtained through simulations for a real-life circuit, are presented. © 2004 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a mathematical model and a methodology to solve the transmission network expansion planning problem with security constraints in full competitive market, assuming that all generation programming plans present in the system operation are known. The methodology let us find an optimal transmission network expansion plan that allows the power system to operate adequately in each one of the generation programming plans specified in the full competitive market case, including a single contingency situation with generation rescheduling using the security (n-1) criterion. In this context, the centralized expansion planning with security constraints and the expansion planning in full competitive market are subsets of the proposal presented in this paper. The model provides a solution using a genetic algorithm designed to efficiently solve the reliable expansion planning in full competitive market. The results obtained for several known systems from the literature show the excellent performance of the proposed methodology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, an expert and interactive system for developing protection system for overhead and radial distribution feeders is proposed. In this system the protective devices can be allocated through heuristic and an optimized way. In the latter one, the placement problem is modeled as a mixed integer non-linear programming, which is solved by genetic algorithm (GA). Using information stored in a database as well as a knowledge base, the computational system is able to obtain excellent conditions of selectivity and coordination for improving the feeder reliability indices. Tests for assessment of the algorithm efficiency were carried out using a real-life 660-nodes feeder. © 2006 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In DNA microarray experiments, the gene fragments that are spotted on the slides are usually obtained by the synthesis of specific oligonucleotides that are able to amplify genes through PCR. Shotgun library sequences are an alternative to synthesis of primers for the study of each gene in the genome. The possibility of putting thousands of gene sequences into a single slide allows the use of shotgun clones in order to proceed with microarray analysis without a completely sequenced genome. We developed an OC Identifier tool (optimal clone identifier for genomic shotgun libraries) for the identification of unique genes in shotgun libraries based on a partially sequenced genome; this allows simultaneous use of clones in projects such as transcriptome and phylogeny studies, using comparative genomic hybridization and genome assembly. The OC Identifier tool allows comparative genome analysis, biological databases, query language in relational databases, and provides bioinformatics tools to identify clones that contain unique genes as alternatives to primer synthesis. The OC Identifier allows analysis of clones during the sequencing phase, making it possible to select genes of interest for construction of a DNA microarray. ©FUNPEC-RP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter studies a two-level production planning problem where, on each level, a lot sizing and scheduling problem with parallel machines, capacity constraints and sequence-dependent setup costs and times must be solved. The problem can be found in soft drink companies where the production process involves two interdependent levels with decisions concerning raw material storage and soft drink bottling. Models and solution approaches proposed so far are surveyed and conceptually compared. Two different approaches have been selected to perform a series of computational comparisons: an evolutionary technique comprising a genetic algorithm and its memetic version, and a decomposition and relaxation approach. © 2008 Springer-Verlag Berlin Heidelberg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering uncertainty in demand and generation. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The model presented results in an optimization problem that is solved using a specialized genetic algorithm. The results obtained for known systems from the literature show that cheaper plans can be found satisfying the uncertainty in demand and generation. ©2008 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering open access. The methodology finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with multiples generation scenarios. The model presented is solved using a specialized genetic algorithm. The methodology is tested in a system from the literature. ©2008 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a methodology and a mathematical model to solve the expansion planning problem that takes into account the effect of contingencies in the planning stage, and considers the demand as a stochastic variable within a specified range. In this way, it is possible to find a solution that minimizes the investment costs guarantying reliability and minimizing future load shedding. The mathematical model of the expansion planning can be represented by a mixed integer nonlinear programming problem. To solve this problem a specialized Genetic Algorithm combined with Linear Programming was implemented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nowadays, we return to live a period of lunar exploration. China, Japan and India heavily invest in missions to the moon, and then try to implement manned bases on this satellite. These bases must be installed in polar regions due to the apparent existence of water. Therefore, the study of the feasibility of satellite constellations for navigation, control and communication recovers importance. The Moon's gravitational potential and resonant movements due to the proximity to Earth as the Kozai-Lidov resonance, must be considered in addition to other perturbations of lesser magnitude. The usual satellite constellations provide, as a basic feature, continuous and global coverage of the Earth. With this goal, they are designed for the smallest number of objects possible to perform a specific task and this amount is directly related to the altitude of the orbits and visual abilities of the members of the constellation. However the problem is different when the area to be covered is reduced to a given zone. The required number of space objects can be reduced. Furthermore, depending on the mission requirements it may be not necessary to provide continuous coverage. Taking into account the possibility of setting up a constellation that covers a specific region of the Moon on a non-continuous base, in this study we seek a criterion of optimization related to the time between visits. The propagation of the orbits of objects in the constellation in conjunction with the coverage constraints, provide information on the periods of time in which points of the surface are covered by a satellite, and time intervals in which they are not. So we minimize the time between visits considering several sets of possible constellations and using genetic algorithms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A metaheuristic technique for solving the short-term transmission network expansion and reactive power planning problems, at the same time, in regulated power systems using the AC model is presented. The problem is solved using a real genetic algorithm (RGA). For each topology proposed by RGA an indicator is employed to identify the weak buses for new reactive power sources allocation. The fitness function is calculated using the cost of each configuration as well as constraints deviation of an AC optimal power flow (OPF) in which the minimum reactive generation of new reactive sources and the active power losses are objectives. With allocation of reactive power sources at load buses, the circuit capacity increases and the cost of installation could be decreased. The method is tested in a well known test system, presenting good results when compared with other approaches. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a tabu search approach to solve the Synchronized and Integrated Two-Level Lot Sizing and Scheduling Problem (SITLSP). It is a real-world problem, often found in soft drink companies, where the production process has two integrated levels with decisions concerning raw material storage and soft drink bottling. Lot sizing and scheduling of raw materials in tanks and products in bottling lines must be simultaneously determined. Real data provided by a soft drink company is used to make comparisons with a previous genetic algorithm. Computational results have demonstrated that tabu search outperformed genetic algorithm in all instances. Copyright 2011 ACM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel mathematical model for the transmission network expansion planning problem. Main idea is to consider phase-shifter (PS) transformers as a new element of the transmission system expansion together with other traditional components such as transmission lines and conventional transformers. In this way, PS are added in order to redistribute active power flows in the system and, consequently, to diminish the total investment costs due to new transmission lines. Proposed mathematical model presents the structure of a mixed-integer nonlinear programming (MINLP) problem and is based on the standard DC model. In this paper, there is also applied a specialized genetic algorithm aimed at optimizing the allocation of candidate components in the network. Results obtained from computational simulations carried out with IEEE-24 bus system show an outstanding performance of the proposed methodology and model, indicating the technical viability of using these nonconventional devices during the planning process. Copyright © 2012 Celso T. Miasaki et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSN) are a special kind of ad-hoc networks that is usually deployed in a monitoring field in order to detect some physical phenomenon. Due to the low dependability of individual nodes, small radio coverage and large areas to be monitored, the organization of nodes in small clusters is generally used. Moreover, a large number of WSN nodes is usually deployed in the monitoring area to increase WSN dependability. Therefore, the best cluster head positioning is a desirable characteristic in a WSN. In this paper, we propose a hybrid clustering algorithm based on community detection in complex networks and traditional K-means clustering technique: the QK-Means algorithm. Simulation results show that QK-Means detect communities and sub-communities thus lost message rate is decreased and WSN coverage is increased. © 2012 IEEE.