823 resultados para Huumo, Katja


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We showed recently that low molecular weight dextran sulfate (DXS) acts as an endothelial cell (EC) protectant and prevents human complement- and NK cell-mediated cytotoxicity towards porcine cells in vitro. We therefore hypothesized that DXS, combined with cyclosporine A (CyA), could prevent acute vascular rejection (AVR) in the hamster-to-rat cardiac xenotransplantation model. Untreated, CyA-only, and DXS-only treated rats rejected their grafts within 4-5 days. Of the hearts grafted into rats receiving DXS in combination with CyA, 28% survived more than 30 days. Deposition of anti-hamster antibodies and complement was detected in long-term surviving grafts. Combined with the expression of hemoxygenase 1 (HO-1) on graft EC, these results indicate that accommodation had occurred. Complement activity was normal in rat sera after DXS injection, and while systemic inhibition of the coagulation cascade was observed 1 h after DXS injection, it was absent after 24 h. Moreover, using a fluorescein-labeled DXS (DXS-Fluo) injected 1 day after surgery, we observed a specific binding of DXS-Fluo to the xenograft endothelium. In conclusion, we show here that DXS + CyA induces long-term xenograft survival and we provide evidence that DXS might act as a local EC protectant also in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last few years, the importance of paediatric stroke has become more and more evident; however, there is still little known about long-term neurological and especially neuropsychological outcome of these children. By retrospective chart review, questionnaire and clinical examination with structured interview, we analysed initial presentation, aetiology and long-term outcome of children suffering ischaemic childhood stroke between 1985 and 1999. A total of 20 children (13 boys) suffered acute arterial ischaemic events. Aetiology was detected in 14, and suspected in another five. Follow-up after 1-15 years (mean 7 years) was possible for 16 children; two had died and two were lost to follow-up. Only two were completely healthy, five suffered mild, six moderate, and three severe handicap. Eleven children presented with combined neurological and neuropsychological problems. Neurological problems were mild to moderate hemisyndrome in 11, dysphasia, epilepsy and other in six each. Mild to severe neuropsychological problems were detected in 13 children, school problems in eight, attention deficits in nine and behaviour problems in seven, increased fatigability and headache in six each. Recurrence was observed in three children, all due to progressive underlying disease. Outcome was most affected by the presence of combined cortical/subcortical and least affected by subcortical infarction. Epilepsy affected neuropsychological outcome. CONCLUSION: although prognosis of paediatric stroke is better than for adult stroke, neurological and especially neuropsychological long-term problems significantly influence the lives of these children. Careful long-term follow-up to support these children in their school career and integration into professional life is necessary. Future studies should evaluate whether specific treatments during the acute episode could improve outcome for these children.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Mitogen-activated protein kinases (MAPKs), including JNK, p38, and ERK1/2, noticeably influence ischemia/reperfusion injury (IRI). The complement inhibitor dextran sulfate (DXS) associates with damaged endothelium denudated of its heparan sulfate proteoglycan (HSPG) layer. Other glycosaminoglycan analogs are known to influence MAPK signaling. Hypothetically therefore, targeted intravascular cytoprotection by DXS may function in part through influencing MAPK activation to reduce IRI-induced damage of the vasculature. METHODS: IRI of the infrarenal aorta of male Wistar rats was induced by 90 minutes clamping followed by 120 minutes reperfusion. DXS (5 mg/mL) or physiologic saline (NaCl controls) was infused locally into the ischemic aortic segment immediately prior to reperfusion. Ninety minutes ischemia-only and heparinase infusion (maximal damage) experiments, as well as native rat aorta, served as controls. Aortas were excised following termination of the experiments for further analysis. RESULTS: DXS significantly inhibited IRI-induced JNK and ERK1/2 activation (P = .043; P =.005) without influencing the p38 pathway (P =.110). Reduced aortic injury, with significant inhibition of apoptosis (P = .032 for DXS vs NaCl), correlated with decreased nuclear factor kappaB translocation within the aortic wall. DXS treatment clearly reduced C1q, C4b/c, C3b/c, and C9 complement deposition, whilst preserving endothelial cell integrity and reducing reperfusion-induced HSPG shedding. Protection was associated with binding of fluorescein labeled DXS to ischemically damaged tissue. CONCLUSIONS: Local application of DXS into ischemic vasculature immediately prior to reperfusion reduces complement deposition and preserves endothelial integrity, partially through modulating activation of MAPKs and may offer a new approach to tackle IRI in vascular surgical procedures. CLINICAL RELEVANCE: The purpose of the present study was to determine the role of dextran sulfate (DXS), a glycosaminoglycan analog and complement inhibitor, in modulating intracellular MAPK signaling pathways, reducing complement activation and ultimately attenuating ischemia/reperfusion injury (IRI) in a rat aortic-clamping model, in part a surrogate model to study the microvasculature. The study shows a role for DXS in ameliorating endothelial injury by reducing IRI-mediated damage and intravascular, local inflammation in the affected aortic segment. DXS may be envisaged as an endothelial protectant in vascular injury, such as occurs during vascular surgical procedures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many hepatitis C virus (HCV) infections worldwide are with the genotype 1 and 3 strains of the virus. Cellular immune responses are known to be important in the containment of HCV genotype 1 infection, and many genotype 1 T cell targets (epitopes) that are presented by host human leukocyte antigens (HLAs) have been identified. In contrast, there is almost no information known about the equivalent responses to genotype 3. Immune escape mechanisms used by HCV include the evolution of viral polymorphisms (adaptations) that abrogate this host-viral interaction. Evidence of HCV adaptation to HLA-restricted immune pressure on HCV can be observed at the population level as viral polymorphisms associated with specific HLA types. To evaluate the escape patterns of HCV genotypes 1 and 3, we assessed the associations between viral polymorphisms and specific HLA types from 187 individuals with genotype 1a and 136 individuals with genotype 3a infection. We identified 51 HLA-associated viral polymorphisms (32 for genotype 1a and 19 for genotype 3a). Of these putative viral adaptation sites, six fell within previously published epitopes. Only two HLA-associated viral polymorphisms were common to both genotypes. In the remaining sites with HLA-associated polymorphisms, there was either complete conservation or no significant HLA association with viral polymorphism in the alternative genotype. This study also highlights the diverse mechanisms by which viral evasion of immune responses may be achieved and the role of genotype variation in these processes. CONCLUSION: There is little overlap in HLA-associated polymorphisms in the nonstructural proteins of HCV for the two genotypes, implying differences in the cellular immune pressures acting on these viruses and different escape profiles. These findings have implications for future therapeutic strategies to combat HCV infection, including vaccine design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficacy of specifically targeted anti-viral therapy for hepatitis C virus (HCV) (STAT-C), including HCV protease and polymerase inhibitors, is limited by the presence of drug-specific viral resistance mutations within the targeted proteins. Genetic diversity within these viral proteins also evolves under selective pressures provided by host human leukocyte antigen (HLA)-restricted immune responses, which may therefore influence STAT-C treatment response. Here, the prevalence of drug resistance mutations relevant to 27 developmental STAT-C drugs, and the potential for drug and immune selective pressures to intersect at sites along the HCV genome, is explored. HCV nonstructural (NS) 3 protease or NS5B polymerase sequences and HLA assignment were obtained from study populations from Australia, Switzerland, and the United Kingdom. Four hundred five treatment-naïve individuals with chronic HCV infection were considered (259 genotype 1, 146 genotype 3), of which 38.5% were coinfected with human immunodeficiency virus (HIV). We identified preexisting STAT-C drug resistance mutations in sequences from this large cohort. The frequency of the variations varied according to individual STAT-C drug and HCV genotype/subtype. Of individuals infected with subtype 1a, 21.5% exhibited genetic variation at a known drug resistance site. Furthermore, we identified areas in HCV protease and polymerase that are under both potential HLA-driven pressure and therapy selection and identified six HLA-associated polymorphisms (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA double-strand breaks (DSBs) are formed during meiosis by the action of the topoisomerase-like Spo11/Rec12 protein, which remains covalently bound to the 5' ends of the broken DNA. Spo11/Rec12 removal is required for resection and initiation of strand invasion for DSB repair. It was previously shown that budding yeast Spo11, the homolog of fission yeast Rec12, is removed from DNA by endonucleolytic cleavage. The release of two Spo11 bound oligonucleotide classes, heterogeneous in length, led to the conjecture of asymmetric cleavage. In fission yeast, we found only one class of oligonucleotides bound to Rec12 ranging in length from 17 to 27 nucleotides. Ctp1, Rad50, and the nuclease activity of Rad32, the fission yeast homolog of Mre11, are required for endonucleolytic Rec12 removal. Further, we detected no Rec12 removal in a rad50S mutant. However, strains with additional loss of components localizing to the linear elements, Hop1 or Mek1, showed some Rec12 removal, a restoration depending on Ctp1 and Rad32 nuclease activity. But, deletion of hop1 or mek1 did not suppress the phenotypes of ctp1Delta and the nuclease dead mutant (rad32-D65N). We discuss what consequences for subsequent repair a single class of Rec12-oligonucleotides may have during meiotic recombination in fission yeast in comparison to two classes of Spo11-oligonucleotides in budding yeast. Furthermore, we hypothesize on the participation of Hop1 and Mek1 in Rec12 removal.