918 resultados para Human motion monitoring
Resumo:
We report here a validated method for the quantification of a new immunosuppressant drug FTY720, using HPLC-tandem mass spectrometry. Whole blood samples (500 mu l) were subjected to liquid-liquid extraction, in the presence of an internal standard (Y-32919). Mass spectrometric detection was by selected reaction monitoring with an atmospheric pressure chemical ionization source in positive ionization mode (FTY720: m/z 308.3 -> 255.3). The assay was linear from 0.2 to 25 mu g/l (r(2) > 0.997, n = 5). The inter- and intra-day analytical recovery and imprecision for quality control samples (0.5, 7 and 15 mu g/l) were 95.8-103.2 and < 5.5%, respectively. At the lower limit of quantification (0.2 mu g/l) the interand intra-day analytical recovery was 99.0-102.8% with imprecision of < 7.6% (n = 5). The assay had a mean relative recovery of 100.5 +/- 5.8% (n = 15). Extracted samples were stable for 16 h. IFTY720 quality control samples were stable at room temperature for 16 h at 4 degrees C for at least 8 days and when taken through at least three freeze-thaw cycles. In conclusion, the method described displays analytical performance characteristics that are suitable for pharmacokinetic studies in humans. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Pentameric capsomeres of human papillomavirus capsid protein L1 expressed in Escherichia coli self-assemble into virus-like particles (VLPs) in vitro. A multifactorial experimental design was used to explore a wide range of solution conditions to optimize the assembly process. The degree of assembly was measured using an enzyme-linked immunosorbent assay, and a high-throughput turbidity assay was developed to monitor competing aggregation. The presence of zinc ions in the assembly buffer greatly increased the incidence of aggregation and had to be excluded from the experiment for meaningful analysis. Assembly of VLPs was optimal at a pH of about 6.5, calcium and sodium ions had no measurable effect, and dithiothreitol and glutathione inhibited assembly. Tryptophan fluorescence spectroscopy demonstrated that an increase in urea concentration reduced the rate of VLP formation but had no effect on the final concentration of assembled VLPs. This study demonstrates the use of the hanging-drop vapor-diffusion crystallization method to screen for conditions that promote aggregation and the use of tryptophan fluorescence spectroscopy for real-time monitoring of the assembly process.
Resumo:
In modern magnetic resonance imaging (MRI), both patients and radiologists are exposed to strong, nonuniform static magnetic fields inside or outside of the scanner, in which the body movement may be able to induce electric currents in tissues which could be possibly harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in the human model when moving at various positions around the magnet. The numerical calculations are based on an efficient, quasistatic, finite-difference scheme and an anatomically realistic, full-body, male model. 3D field profiles from an actively-shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The results are easy to extrapolate to very high field strengths for the safety evaluation at a variety of field strengths and motion velocities.
Resumo:
Asthma is a multifactorial disease for which a variety of mouse models have been developed. A major drawback of these models is represented by the transient nature of the airway pathology peaking 24 to 72 hours after challenge and resolving in 1 to 2 weeks. The objective of this study is to characterize the temporal evolution of pulmonary inflammation and remodeling in a recently described mouse model of chronic asthma (8 week treatment with 3 allergens relevant for the human pathology: Dust mite, Ragweed, and Aspergillus; DRA). We studied the DRA model taking advantage of fluorescence molecular tomography (FMT) imaging using near-infrared probes to non-invasively evaluate lung inflammation and airway remodeling. At 4, 6, 8 or 11 weeks, cathepsin- and metalloproteinase-dependent fluorescence was evaluated in vivo. A subgroup of animals, after 4 weeks of DRA, was treated with Budesonide (100 µg/kg intranasally) daily for 4 weeks. Cathepsin-dependent fluorescence in DRA-sensitized mice resulted significantly increased at 6 and 8 weeks, and was markedly inhibited by budesonide. This fluorescent signal well correlated with ex vivo analysis such as bronchoalveolar lavage eosinophils and alveolar cell infiltration. Metalloproteinase-dependent fluorescence was significantly increased at 8 and 11 weeks, nicely correlated with collagen deposition, as evaluated histologically by Masson’s Trichrome staining, and airway epithelium hypertrophy, and was also partly inhibited by budesonide. In conclusion, FMT proved suitable for longitudinal study to evaluate asthma progression, both in terms of inflammatory cell infiltration and airway remodeling, allowing the determination of treatment efficacy in a chronic asthma model in mice.
Resumo:
This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 0.2% live births, 1.1% for preterm neonates, and 1.3% for infants weighing less than 2500 g at birth. Neonatal seizures can be classified into four main categories: clonic, tonic, myoclonic, and subtle. Seizures in newborns have to be promptly and accurately recognized in order to establish timely treatments that could avoid an increase of the underlying brain damage. Respiratory diseases related to the occurrence of apnoea episodes may be caused by cerebrovascular events. Among the wide range of causes of apnoea, besides seizures, a relevant one is Congenital Central Hypoventilation Syndrome (CCHS) \cite{Healy}. With a reported prevalence of 1 in 200,000 live births, CCHS, formerly known as Ondine's curse, is a rare life-threatening disorder characterized by a failure of the automatic control of breathing, caused by mutations in a gene classified as PHOX2B. CCHS manifests itself, in the neonatal period, with episodes of cyanosis or apnoea, especially during quiet sleep. The reported mortality rates range from 8% to 38% of newborn with genetically confirmed CCHS. Nowadays, CCHS is considered a disorder of autonomic regulation, with related risk of sudden infant death syndrome (SIDS). Currently, the standard method of diagnosis, for both diseases, is based on polysomnography, a set of sensors such as ElectroEncephaloGram (EEG) sensors, ElectroMyoGraphy (EMG) sensors, ElectroCardioGraphy (ECG) sensors, elastic belt sensors, pulse-oximeter and nasal flow-meters. This monitoring system is very expensive, time-consuming, moderately invasive and requires particularly skilled medical personnel, not always available in a Neonatal Intensive Care Unit (NICU). Therefore, automatic, real-time and non-invasive monitoring equipments able to reliably recognize these diseases would be of significant value in the NICU. A very appealing monitoring tool to automatically detect neonatal seizures or breathing disorders may be based on acquiring, through a network of sensors, e.g., a set of video cameras, the movements of the newborn's body (e.g., limbs, chest) and properly processing the relevant signals. An automatic multi-sensor system could be used to permanently monitor every patient in the NICU or specific patients at home. Furthermore, a wire-free technique may be more user-friendly and highly desirable when used with infants, in particular with newborns. This work has focused on a reliable method to estimate the periodicity in pathological movements based on the use of the Maximum Likelihood (ML) criterion. In particular, average differential luminance signals from multiple Red, Green and Blue (RGB) cameras or depth-sensor devices are extracted and the presence or absence of a significant periodicity is analysed in order to detect possible pathological conditions. The efficacy of this monitoring system has been measured on the basis of video recordings provided by the Department of Neurosciences of the University of Parma. Concerning clonic seizures, a kinematic analysis was performed to establish a relationship between neonatal seizures and human inborn pattern of quadrupedal locomotion. Moreover, we have decided to realize simulators able to replicate the symptomatic movements characteristic of the diseases under consideration. The reasons is, essentially, the opportunity to have, at any time, a 'subject' on which to test the continuously evolving detection algorithms. Finally, we have developed a smartphone App, called 'Smartphone based contactless epilepsy detector' (SmartCED), able to detect neonatal clonic seizures and warn the user about the occurrence in real-time.
Resumo:
Background/aims Macular pigment is thought to protect the macula against exposure to light and oxidative stress, both of which may play a role in the development of age-related macular degeneration. The aim was to clinically evaluate a novel cathode-ray-tube-based method for measurement of macular pigment optical density (MPOD) known as apparent motion photometry (AMP). Methods The authors took repeat readings of MPOD centrally (0°) and at 3° eccentricity for 76 healthy subjects (mean (±SD) 26.5±13.2 years, range 18–74 years). Results The overall mean MPOD for the cohort was 0.50±0.24 at 0°, and 0.28±0.20 at 3° eccentricity; these values were significantly different (t=-8.905, p<0.001). The coefficients of repeatability were 0.60 and 0.48 for the 0 and 3° measurements respectively. Conclusions The data suggest that when the same operator is taking repeated 0° AMP MPOD readings over time, only changes of more than 0.60 units can be classed as clinically significant. In other words, AMP is not suitable for monitoring changes in MPOD over time, as increases of this magnitude would not be expected, even in response to dietary modification or nutritional supplementation.
Resumo:
We sought to determine the extent to which colour (and luminance) signals contribute towards the visuomotor localization of targets. To do so we exploited the movement-related illusory displacement a small stationary window undergoes when it has a continuously moving carrier grating behind it. We used drifting (1.0-4.2 Hz) red/green-modulated isoluminant gratings or yellow/black luminance-modulated gratings as carriers, each curtailed in space by a stationary, two-dimensional window. After each trial, the perceived location of the window was recorded with reference to an on-screen ruler (perceptual task) or the on-screen touch of a ballistic pointing movement made without visual feedback (visuomotor task). Our results showed that the perceptual displacement measures were similar for each stimulus type and weakly dependent on stimulus drift rate. However, while the visuomotor displacement measures were similar for each stimulus type at low drift rates (<4 Hz), they were significantly larger for luminance than colour stimuli at high drift rates (>4 Hz). We show that the latter cannot be attributed to differences in perceived speed between stimulus types. We assume, therefore, that our visuomotor localization judgements were more susceptible to the (carrier) motion of luminance patterns than colour patterns. We suggest that, far from being detrimental, this susceptibility may indicate the operation of mechanisms designed to counter the temporal asynchrony between perceptual experiences and the physical changes in the environment that give rise to them. We propose that perceptual localisation is equally supported by both colour and luminance signals but that visuomotor localisation is predominantly supported by luminance signals. We discuss the neural pathways that may be involved with visuomotor localization. © 2007 Springer-Verlag.
Resumo:
We sought to determine the extent to which red–green, colour–opponent mechanisms in the human visual system play a role in the perception of drifting luminance–modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance–modulated (yellow–black) test sinusoids was measured following adaptation to isoluminant red–green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1–16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1–4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal–frequency–dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance–modulated motion targets drifting at speeds of up to at least 32°s-1. We argue that such mechanisms most probably lie within a parvocellular–dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.
Resumo:
Blurred edges appear sharper in motion than when they are stationary. We have previously shown how such distortions in perceived edge blur may be explained by a model which assumes that luminance contrast is encoded by a local contrast transducer whose response becomes progressively more compressive as speed increases. To test this model further, we measured the sharpening of drifting, periodic patterns over a large range of contrasts, blur widths, and speeds Human Vision. The results indicate that, while sharpening increased with speed, it was practically invariant with contrast. This contrast invariance cannot be explained by a fixed compressive nonlinearity since that predicts almost no sharpening at low contrasts.We show by computational modelling of spatiotemporal responses that, if a dynamic contrast gain control precedes the static nonlinear transducer, then motion sharpening, its speed dependence, and its invariance with contrast can be predicted with reasonable accuracy.
Resumo:
Stimuli from one family of complex motions are defined by their spiral pitch, where cardinal axes represent signed expansion and rotation. Intermediate spirals are represented by intermediate pitches. It is well established that vision contains mechanisms that sum over space and direction to detect these stimuli (Morrone et al., Nature 376 (1995) 507) and one possibility is that four cardinal mechanisms encode the entire family. We extended earlier work (Meese & Harris, Vision Research 41 (2001) 1901) using subthreshold summation of random dot kinematograms and a two-interval forced choice technique to investigate this possibility. In our main experiments, the spiral pitch of one component was fixed and that of another was varied in steps of 15° relative to the first. Regardless of whether the fixed component was aligned with cardinal axes or an intermediate spiral, summation to-coherence-threshold between the two components declined as a function of their difference in spiral pitch. Similar experiments showed that none of the following were critical design features or stimulus parameters for our results: superposition of signal dots, limited life-time dots, the presence of speed gradients, stimulus size or the number of dots. A simplex algorithm was used to fit models containing mechanisms spaced at a pitch of either 90° (cardinal model) or 45° (cardinal+model) and combined using a fourth-root summation rule. For both models, direction half-bandwidth was equated for all mechanisms and was the only free parameter. Only the cardinal+model could account for the full set of results. We conclude that the detection of complex motion in human vision requires both cardinal and spiral mechanisms with a half-bandwidth of approximately 46°. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This thesis addresses the viability of automatic speech recognition for control room systems; with careful system design, automatic speech recognition (ASR) devices can be useful means for human computer interaction in specific types of task. These tasks can be defined as complex verbal activities, such as command and control, and can be paired with spatial tasks, such as monitoring, without detriment. It is suggested that ASR use be confined to routine plant operation, as opposed the critical incidents, due to possible problems of stress on the operators' speech. It is proposed that using ASR will require operators to adapt a commonly used skill to cater for a novel use of speech. Before using the ASR device, new operators will require some form of training. It is shown that a demonstration by an experienced user of the device can lead to superior performance than instructions. Thus, a relatively cheap and very efficient form of operator training can be supplied by demonstration by experienced ASR operators. From a series of studies into speech based interaction with computers, it is concluded that the interaction be designed to capitalise upon the tendency of operators to use short, succinct, task specific styles of speech. From studies comparing different types of feedback, it is concluded that operators be given screen based feedback, rather than auditory feedback, for control room operation. Feedback will take two forms: the use of the ASR device will require recognition feedback, which will be best supplied using text; the performance of a process control task will require task feedback integrated into the mimic display. This latter feedback can be either textual or symbolic, but it is suggested that symbolic feedback will be more beneficial. Related to both interaction style and feedback is the issue of handling recognition errors. These should be corrected by simple command repetition practices, rather than use error handling dialogues. This method of error correction is held to be non intrusive to primary command and control operations. This thesis also addresses some of the problems of user error in ASR use, and provides a number of recommendations for its reduction.
Resumo:
Computer integrated monitoring is a very large area in engineering where on-line, real time data acquisition with the aid of sensors is the solution to many problems in the manufacturing industry as opposed to the old data logging method by graphics analysis. The raw data which is collected this way however is useless in the absence of a proper computerized management system. The transfer of data between the management and the shop floor processes has been impossible in the past unless all the computers in the system were totally compatible with each other. This limits the efficiency of the systems because they get governed by the limitations of the computers. General Motors of U.S.A. have recently started research on a new standard called the Manufacturing Automation Protocol (MAP) which is expected to allow data transfer between different types of computers. This is still in early development stages and also is currently very expensive. This research programme shows how such a shop floor data acquisition system and a complete management system on entirely different computers can be integrated together to form a single system by achieving data transfer communications using a cheaper but a superior alternative to MAP. Standard communication character sets and hardware such as ASCII and UARTs have been used in this method but the technique is so powerful that totally incompatible computers are shown to run different programs (in different languages) simultaneously and yet receive data from each other and process in their own CPUs with no human intervention.
Resumo:
Aerial photography was used to determine the land use in a test area of the Nigerian savanna in 1950 and 1972. Changes in land use were determined and correlated with accessibility, appropriate low technology methods being used to make it easy to extend the investigation to other areas without incurring great expense. A test area of 750 sq km was chosen located in Kaduna State of Nigeria. The geography of the area is summarised together with the local knowledge which is essential for accurate photo interpretation. A land use classification was devised and tested for use with medium scale aerial photography of the savanna. The two sets of aerial photography at 1:25 000 scale were sampled using systematic dot grids. A dot density of 8 1/2 dots per sq km was calculated to give an acceptable estimate of land use. Problems of interpretation included gradation between categories, sample position uncertainty and personal bias. The results showed that in 22 years the amount of cultivated land in the test area had doubled while there had been a corresponding decrease in the amount of uncultivated land particularly woodland. The intensity of land use had generally increased. The distribution of land use changes was analysed and correlated with accessibility. Highly significant correlations were found for 1972 which had not existed in 1950. Changes in land use could also be correlated with accessibility. It was concluded that in the 22 year test period there had been intensification of land use, movement of human activity towards the main road, and a decrease in natural vegetation particularly close to the road. The classification of land use and the dot grid method of survey were shown to be applicable to a savanna test area.